
INTRODUCTION TO C++ UNIT 1

INSTITUTE OF DISTANCE & OPEN LEARNING 1

1
Algorithms, Flowcharts & Program

Design

Unit Structure:

1.1 Objectives

1.2 Introduction

1.3 Algorithms

1.3.1 Expressing Algorithms

1.3.2 Benefits of Using Algorithms

1.3.3 General Approaches in Algorithm Design

1.3.4 Analysis of Algorithms

1.4 Flowcharts

1.4.1 Advantages of Using Flowcharts

1.4.2 Limitations of Using Flowcharts

1.4.3 When to Use Flowcharts

1.4.4 Flowchart Symbols & Guidelines

1.4.5 Types of Flowcharts

1.5 Program Design

1.5.1 Activities involved in Program Design

1.5.2 Object-Oriented Formulations

1.6 Summary

1.7 Unit End Exercises

1.7.1 Questions

1.7.2 Programming Projects

1.8 Further Reading

1.1 OBJECTIVES

After completing this chapter, you will be able to:

� Understand the basics and usefulness of an algorithm,

� Analyse various algorithms,

� Understand a flowchart and its advantages and limitations,

� Steps involved in designing a program.

1.2 INTRODUCTION

A computer is a useful tool for solving a great variety of

problems. To make a computer do anything (i.e. solve a problem), you

have to write a computer program. In a computer program you tell a

computer, step by step, exactly what you want it to do. The computer

then executes the program, following each step mechanically, to

accomplish the end goal.

INTRODUCTION TO C++ UNIT 1

INSTITUTE OF DISTANCE & OPEN LEARNING 2

The sequence of steps to be performed in order to solve a

problem by the computer is known as an algorithm.

Flowchart is a graphical or symbolic representation of an

algorithm. It is the diagrammatic representation of the step-by-step

solution to a given problem.

Program Design consists of the steps a programmer should do

before they start coding the program in a specific language. Proper

program design helps other programmers to maintain the program in

the future.

1.3 ALGORITHMS

Look around you. Computers and networks are everywhere,

enabling an intricate web of complex human activities: education,

commerce, entertainment, research, manufacturing, health

management, communication, even war. Of the two main

technological underpinnings of this amazing proliferation, one is the

breathtaking pace with which advances in microelectronics and chip

design have been bringing us faster and faster hardware. The other is

efficient algorithms that are fuelling the computer revolution.

In mathematics, computer science, and related subjects, an

algorithm is a finite sequence of steps expressed for solving a problem.

An algorithm can be defined as “a process that performs some

sequence of operations in order to solve a given problem”. Algorithms

are used for calculation, data processing, and many other fields.

In computing, algorithms are essential because they serve as the

systematic procedures that computers require. A good algorithm is like

using the right tool in the workshop. It does the job with the right

amount of effort. Using the wrong algorithm or one that is not clearly

defined is like trying to cut a piece of plywood with a pair of scissors:

although the job may get done, you have to wonder how effective you

were in completing it.

Let us follow an example to help us understand the concept of

algorithm in a better way. Let’s say that you have a friend arriving at

the railway station, and your friend needs to get from the railway

station to your house. Here are three different ways (algorithms) that

you might give your friend for getting to your home.

� The taxi/auto-rickshaw algorithm:

� Go to the taxi/auto-rickshaw stand.

� Get in a taxi/auto-rickshaw.

� Give the driver my address.

� The call-me algorithm:

� When your train arrives, call my mobile phone.

INTRODUCTION TO C++ UNIT 1

INSTITUTE OF DISTANCE & OPEN LEARNING 3

� Meet me outside the railway station.

� The bus algorithm:

� Outside the railway station, catch bus number 321.

� Transfer to bus 308 near Kurla station.

� Get off near Kalina University.

� Walk two blocks west to my house.

All these three algorithms accomplish the same goal, but each

algorithm does it in a different way. Each algorithm also has a different

cost and a different travel time. Taking a taxi/auto-rickshaw, for

example, is the fastest way, but also the most expensive. Taking the

bus is definitely less expensive, but a whole lot slower. You choose the

algorithm based on the circumstances.

In computer programming, there are often many different

algorithms to accomplish any given task. Each algorithm has

advantages and disadvantages in different situations. Sorting is one

place where a lot of research has been done, because computers spend

a lot of time sorting lists.

Three reasons for using algorithms are efficiency, abstraction and

reusability.

� Efficiency: Certain types of problems, like sorting, occur often

in computing. Efficient algorithms must be used to solve such

problems considering the time and cost factor involved in each

algorithm.

� Abstraction: Algorithms provide a level of abstraction in

solving problems because many seemingly complicated

problems can be distilled into simpler ones for which well-

known algorithms exist. Once we see a more complicated

problem in a simpler light, we can think of the simpler problem

as just an abstraction of the more complicated one. For

example, imagine trying to find the shortest way to route a

packet between two gateways in an internet. Once we realize

that this problem is just a variation of the more general shortest

path problem, we can solve it using the generalised approach.

� Reusability: Algorithms are often reusable in many different

situations. Since many well-known algorithms are the

generalizations of more complicated ones, and since many

complicated problems can be distilled into simpler ones, an

efficient means of solving certain simpler problems potentially

lets us solve many complicated problems.

1.3.1 Expressing Algorithms:

Algorithms can be expressed in many different notations,

including natural languages, pseudocode, flowcharts and

programming languages. Natural language expressions of algorithms

tend to be verbose and ambiguous, and are rarely used for complex or

INTRODUCTION TO C++ UNIT 1

INSTITUTE OF DISTANCE & OPEN LEARNING 4

technical algorithms. Pseudocode and flowcharts are structured ways

to express algorithms that avoid many ambiguities common in natural

language statements, while remaining independent of a particular

implementation language. Programming languages are primarily

intended for expressing algorithms in a form that can be executed by a

computer, but are often used to define or document algorithms.

Sometimes it is helpful in the description of an algorithm to

supplement small flowcharts with natural language and/or arithmetic

expressions written inside block diagrams to summarize what the

flowcharts are accomplishing.

Consider an example for finding the largest number in an

unsorted list of numbers.

The solution for this problem requires looking at every number in the

list, but only once at each.

1) Algorithm using natural language statements:

a) Assume the first item is largest.

b) Look at each of the remaining items in the list and if it is larger

than the largest item so far, make a note of it.

c) The last noted item is the largest item in the list when the

process is complete.

2) Algorithm using pseudocode:

largest = L0

for each item in the list (Length(L) ≥ 1), do

if the item ≥ largest, then

largest = the item

return largest

1.3.2 Benefits of using Algorithms:

The use of algorithms provides a number of benefits. One of

these benefits is in the development of the procedure itself, which

involves identification of the processes, major decision points, and

variables necessary to solve the problem. Developing an algorithm

allows and even forces examination of the solution process in a

rational manner. Identification of the processes and decision points

reduces the task into a series of smaller steps of more manageable size.

Problems that would be difficult or impossible to solve in entirety can

be approached as a series of small, solvable sub-problems.

By using an algorithm, decision making becomes a more

rational process. In addition to making the process more rational, use

of algorithm will make the process more efficient and more consistent.

Efficiency is an inherent result of the analysis and specification

process. Consistency comes from both the use of the same specified

process and increased skill in applying the process. An algorithm

serves as a mnemonic device and helps ensure that variables or parts of

INTRODUCTION TO C++ UNIT 1

INSTITUTE OF DISTANCE & OPEN LEARNING 5

the problem are not ignored. Presenting the solution process as an

algorithm allows more precise communication. Finally, separation of

the procedure steps facilitates division of labour and development of

expertise.

A final benefit of the use of an algorithm comes from the

improvement it makes possible. If the problem solver does not know

what was done, he or she will not know what was done wrong. As time

goes by and results are compared with goals, the existence of a

specified solution process allows identification of weaknesses and

errors in the process. Reduction of a task to a specified set of steps or

algorithm is an important part of analysis, control and evaluation.

1.3.3 General Approaches in Algorithm Design:

In a broad sense, many algorithms approach problems in the

same way. Thus, it is often convenient to classify them based on the

approach they employ. One reason to classify algorithms is to gain an

insight about an algorithm and understand its general approach. This

can also give us ideas about how to look at similar problems for which

we do not know algorithms. Of course, some algorithms defy

classification, whereas others are based on a combination of

approaches. This section presents some common approaches.

1.3.3.1 Randomized Algorithms:

Randomized algorithms rely on the statistical properties of

random numbers. One example of a randomized algorithm is quicksort.

Imagine an unsorted pile of cancelled checks by hand. In order

to sort this pile we place the checks numbered less than or equal to

what we may think is the median value in one pile, and in the other pile

we place the checks numbered greater than this. Once we have the two

piles, we divide each of them in the same manner and repeat the

process until we end up with one check in every pile. At this point the

checks are sorted.

1.3.3.2 Divide-and-conquer Algorithms:

Divide-and-conquer algorithms revolve around 3 steps: divide,

conquer and combine. In the divide step, we divide the data into

smaller, more manageable pieces. In the conquer step, we process each

division by performing some operations on it. In the combine step, we

recombine the processed divisions. An example of the divide-and-

conquer algorithm is merge sort.

As before, imagine an unsorted pile of cancelled checks by

hand. We begin by dividing the pile in half. Next, we divide each of

the resulting two piles in half and continue this process until we end up

with one check in every pile. Once all piles contain a single check, we

merge the piles two by two so that each pile is a sorted combination of

the two that were merged. Merging continues until we end up with one

big pile again, at which point the checks are sorted.

INTRODUCTION TO C++ UNIT 1

INSTITUTE OF DISTANCE & OPEN LEARNING 6

1.3.3.3 Dynamic-programming solutions:

Dynamic-programming solutions are similar to divide-and-

conquer methods in that both solve problems by breaking larger

problems into sub-problems whose results are later recombined.

However, the approaches differ in how sub-problems are related. In

divide-and-conquer algorithms, each sub-problem is independent of the

others. Therefore we solve each sub-problem using recursion and

combine its results with the results of other sub-problems. In dynamic-

programming solutions, sub-problems are not independent of one

another. A dynamic-programming solution is better than a divide-and-

conquer approach because the latter approach will do more work than

necessary, as shared sub-problems are solved more than once.

However, if the sub-problems are independent and there is no

repetition, using divide-and-conquer algorithms is much better than

using dynamic-programming.

An example of dynamic-programming is finding the shortest

path to reach a point from a vertex in a weighted graph.

1.3.3.4 Greedy Algorithms:

Greedy algorithms make decisions that look best at the

moment. In other words, they make decisions that are locally optimal

in the hope that they will lead to globally optimal solutions. The

greedy method extends the solution with the best possible decision at

an algorithmic stage based on the current local optimum and the best

decision made in a previous stage. It is not exhaustive, and does not

give accurate answer to many problems. But when it works, it will be

the fastest method.

One example of a greedy algorithm is Huffman coding, which

is an algorithm for data compression.

1.3.3.5 Approximation Algorithms:

Approximation algorithms are algorithms that do not compute

optimal solutions; instead, they compute solutions that are “good

enough”. Often we use approximation algorithms to solve problems

that are computationally expensive but are too significant to give up

altogether. The travelling salesman problem is one example of a

problem usually solved using an approximation algorithm.

1.3.4 Analysis of Algorithms:

Whether we are designing an algorithm or applying one that is

widely accepted, it is important to understand how the algorithm will

perform. There are a number of ways we can look at an algorithm’s

performance, but usually the aspect of most interest is how fast the

algorithm will run. In some cases, if an algorithm uses significant

storage, we may be interested in its space requirement as well.

INTRODUCTION TO C++ UNIT 1

INSTITUTE OF DISTANCE & OPEN LEARNING 7

Analysis of algorithms is the theoretical study of computer

program performance and resource usage, and is often practised

abstractly without the use of specific programming language or

implementation. The practical goal of algorithm analysis is to predict

the performance of different algorithms in order to guide program

design decisions. There are many reasons to understand the

performance of an algorithm. For example, we often have a choice of

several algorithms when solving problems (like sorting).

Understanding how each performs helps us differentiate between them.

Understanding the burden an algorithm places on an application also

helps us plan how to use the algorithm more effectively. For instance,

garbage collection algorithms, algorithms that collect dynamically

allocated storage to return to the heap, require considerable time to run.

Knowing this we can be careful to run them only at opportune

moments, just as Java does, for example.

Algorithm analysis is important in practice because the

accidental or unintentional use of an inefficient algorithm can

significantly impact system performance. In time-sensitive

applications, an algorithm taking too long to run can render its results

outdated or useless. An inefficient algorithm can also end up requiring

an uneconomical amount of computing power or storage in order to

run, again rendering it practically useless.

1.3.4.1 Worst-Case Analysis:

Most algorithms do not perform the same in all cases; normally

an algorithm’s performance varies with the data passed to it. Typically,

three cases are recognized: the best case, average case and worst case.

For any algorithm, understanding what constitutes each of these cases

is an important part of analysis because performance can vary

significantly between them.

Consider a simple algorithm such as linear search. Linear

search is a natural but inefficient search technique in which we look for

an element simply by traversing a set from one end to the other. In the

best case, the element we are looking for is the first element we

inspect, so we end up traversing only a single element. In the worst

case, however, the desired element is the last element that we inspect,

in which we end up traversing all the elements. On average, we can

expect to find the element somewhere in the middle.

A basic understanding of how an algorithm performs in all

cases is important, but usually we are most interested in how an

algorithm performs in the worst case. There are four reasons why

algorithms are generally analyzed by their worst case:

� Many algorithms perform to their worst case a large part of the

time. For example, the worst case in searching occurs when we

do not find what we are looking for at all. This frequently

happens in database applications.

� The best case is not very informative because many algorithms

perform exactly the same in the best case. For example, nearly

INTRODUCTION TO C++ UNIT 1

INSTITUTE OF DISTANCE & OPEN LEARNING 8

all searching algorithms can locate an element in one inspection

at best, so analyzing this case does not tell us much.

� Determining average-case performance is not always easy.

Often it is difficult to determine exactly what the “average

case” even is; since we can seldom guarantee precisely how an

algorithm will be exercised.

� The worst case gives us an upper bound on performance.

Analyzing an algorithm’s worst case guarantees that it will

never perform worse than what we determine. Therefore, we

know that the other cases must perform at least better than the

worst case.

Worst case analysis of algorithms is considered to be crucial to

applications such as games, finance and robotics. Although worst case

analysis is the metric for many algorithms, it is worth noting that there

are exceptions. Sometimes special circumstances let us base

performance on the average case (for example quick-sort algorithm).

1.3.4.2 O-notation:

O-notation, also known as Big O-notation, is the most common

notation used to express an algorithm’s performance in a formal

manner. Formally, O-notation expresses the upper bound is a function

within a constant factor. Specifically, if g(n) is an upper bound of f(n),

then for some constant c it is possible to find the value of n, call it n0,

for which any value of n≥n0 will result in f(n)≤cg(n).

Normally we express an algorithm’s performance as a function

of the size of the data it processes. That is, for some data of size n, we

describe its performance with some function f(n). Primarily we are

interested only in the growth rate of f, which describes how quickly the

algorithm’s performance will degrade as the size of data it processes

becomes arbitrarily large. An algorithm’s growth rate, or order of

growth, is significant because ultimately it describes how efficient the

algorithm is for aritrary inputs. O-notation reflects an algorithm’s order

of growth.

Simple Rules for O-notation:

O-notation lets us focus on the big picture. When faced with a

complicated function like 3n
2
 + 4n + 5, we just replace it with O(f(n)),

where f(n) is as simple as possible. In this particular example we'd use

O(n
2
), because the quadratic portion of the sum dominates the rest of

the function. Here are some rules that help simplify functions by

omitting dominated terms:

1. We can ignore constant terms because as the value of n

becomes larger and larger, eventually constant terms will

become insignificant. For example, if T(n) = n+50 describes the

running time of an algorithm, and n, the size of data it

processes, is only 1024, the constant term in this expression

constitutes less than 5% of the running time.

INTRODUCTION TO C++ UNIT 1

INSTITUTE OF DISTANCE & OPEN LEARNING 9

2. We can ignore multiplicative constants because they too will

become insignificant as the value of n increases. For example,

14n
2
 becomes n

2
.

3. We need to consider the highest-order term because as n

increases higher-order terms quickly outweigh the lower-order

terms. That is, n
a
 dominates n

b
 if a > b. For instance, n

2

dominates n.

4. We also must note that an exponential term dominates any

polynomial term in the expression. For example, 3
n
 dominates

n
5
 (it even dominates 2

n
).

5. Similarly, a polynomial term dominates any logarithmic term

used in the expression. For example, n dominates (log n)
3
. This

also means, for example, that n
2
 dominates n log n.

1.3.4.3 O-Notation Example:

This section discusses how these rules help us in predicting an

algorithm’s performance. Let’s look at a specific example

demonstrating why they work so well in describing a function’s growth

rate. Suppose we have an algorithm whose running time is described

by the function T(n) = 3n
2
 + 10n + 10.

Using the rules of O-notation, this function can be simplified to:

 O(T(n)) = O(3n
2
 + 10n + 10) = O(3n

2
) = O(n

2
)

This indicates that the term n
2
 will be the one that accounts for

the most of the running time as n grows arbitrarily large. We can verify

this quantitatively by computing the percentage of the overall running

time that each term accounts for as n increases. For example, when n =

10, we have the following:

Running time for 3n
2
: 3(10)

2
 / (3(10)

2
 + 10(10) + 10) = 73.2%

Running time for 10n: 10(10) / (3(10)
2
 + 10(10) + 10) = 24.4%

Running time for 10: 10 / (3(10)
2
 + 10(10) + 10) = 2.4%

Already we see that the n
2
 term accounts for the majority of the

overall running time. Now consider when n = 100:

Running time for 3n
2
: 3(100)

2
 / (3(100)

2
 + 10(100) + 10) = 96.7%

Running time for 10n: 10(100) / (3(100)
2
 + 10(100) + 10) = 3.2%

Running time for 10: 10 / (3(100)
2
 + 10(100) + 10) = 0.1%

Here we see that this term accounts for almost all of the

running time, while the significance of the other terms diminishes

further. Imagine how much of the running time this term would

account for if n was 10
6
!

Check Your Progress:

1. Write an algorithm to find out the smallest number in an

unsorted list.

INTRODUCTION TO C++ UNIT 1

INSTITUTE OF DISTANCE & OPEN LEARNING 10

2. Given above, merge sort is used to sort an unsorted pile of

cancelled checks (section 1.3.3.2). Find out other methods that

can be used for sorting.

1.4 FLOWCHARTS

A Flowchart is a type of diagram (graphical or symbolic) that

represents an algorithm or process. Each step in the process is

represented by a different symbol and contains a short description of

the process step. The flow chart symbols are linked together with

arrows showing the process flow direction. A flowchart typically

shows the flow of data in a process, detailing the operations/steps in a

pictorial format which is easier to understand than reading it in a

textual format.

A flowchart describes what operations (and in what sequence)

are required to solve a given problem. A flowchart can be likened to

the blueprint of a building. As we know a designer draws a blueprint

before starting construction on a building. Similarly, a programmer

prefers to draw a flowchart prior to writing a computer program.

Flowcharts are a pictorial or graphical representation of a process. The

purpose of all flow charts is to communicate how a process works or

should work without any technical or group specific jargon.

Flowcharts are used in analyzing, designing, documenting or

managing a process or program in various fields.

Flowcharts are generally drawn in the early stages of

formulating computer solutions. Flowcharts often facilitate

communication between programmers and business people. These

flowcharts play a vital role in the programming of a problem and are

quite helpful in understanding the logic of complicated and lengthy

problems. Once the flowchart is drawn, it becomes easy to write the

program in any high level language. Often we see how flowcharts are

helpful in explaining the program to others. Hence, it is correct to say

that a flowchart is a must for the better documentation of a complex

program.

For example, consider that we need to find the sum, average

and product of 3 numbers given by the user.

Algorithm for the given problem is as follows:

Read X, Y, Z

Compute Sum (S) as X + Y + Z

Compute Average (A) as S / 3

Compute Product (P) as X x Y x Z

INTRODUCTION TO C++ UNIT 1

INSTITUTE OF DISTANCE & OPEN LEARNING 11

Write (Display) the Sum, Average and Product

Flowchart for the above problem will look like

Now that we have seen an example of a flowchart let us list the

advantages and limitations of using flowcharts.

1.4.1 Advantages of Using Flowcharts:

The benefits of flowcharts are as follows:

� Communication: Flowcharts are better way of communicating

the logic of a system to all concerned.

� Effective analysis: With the help of flowchart, problem can be

analysed in more effective way.

� Proper documentation: Program flowcharts serve as a good

program documentation, which is needed for various purposes.

� Efficient Coding: The flowcharts act as a guide or blueprint

during the systems analysis and program development phase.

� Proper Debugging: The flowchart helps in debugging process.

� Efficient Program Maintenance: The maintenance of operating

program becomes easy with the help of flowchart. It helps the

programmer to put efforts more efficiently on that part.

1.4.2 Limitations of Using Flowcharts:

Although a flowchart is a very useful tool, there are a few limitations

in using flowcharts which are listed below:

� Complex logic: Sometimes, the program logic is quite

complicated. In that case, flowchart becomes complex and

clumsy.

� Alterations and Modifications: If alterations are required the

flowchart may require re-drawing completely.

INTRODUCTION TO C++ UNIT 1

INSTITUTE OF DISTANCE & OPEN LEARNING 12

� Reproduction: As the flowchart symbols cannot be typed,

reproduction of flowchart becomes a problem.

� The essentials of what is done can easily be lost in the technical

details of how it is done.

1.4.3 When to Use a Flowchart:

� To communicate to others how a process is done.

� A flowchart is generally used when a new project begins in

order to plan for the project.

� A flowchart helps to clarify how things are currently working

and how they could be improved. It also assists in finding the

key elements of a process, while drawing clear lines between

where one process ends and the next one starts.

� Developing a flowchart stimulates communication among

participants and establishes a common understanding about the

process. Flowcharts also uncover steps that are redundant or

misplaced.

� Flowcharts are used to help team members, to identify who

provides inputs or resources to whom, to establish important

areas for monitoring or data collection, to identify areas for

improvement or increased efficiency, and to generate

hypotheses about causes.

� It is recommended that flowcharts be created through group

discussion, as individuals rarely know the entire process and

the communication contributes to improvement.

� Flowcharts are very useful for documenting a process (simple

or complex) as it eases the understanding of the process.

� Flowcharts are also very useful to communicate to others how a

process is performed and enables understanding of the logic of

a process.

1.4.4 Flowchart Symbols & Guidelines:

Flowcharts are usually drawn using some standard symbols;

however, some special symbols can also be developed when required.

Some standard symbols, which are frequently required for

flowcharting many computer programs are shown.

Terminator: An oval flow chart shape indicates the start or end of the

process, usually containing the word “Start” or “End”.

Process: A rectangular flow chart shape indicates a normal/generic

process flow step. For example, “Add 1 to X”, “M = M*F” or similar.

INTRODUCTION TO C++ UNIT 1

INSTITUTE OF DISTANCE & OPEN LEARNING 13

Decision: A diamond flow chart shape indicates a branch in the

process flow. This symbol is used when a decision needs to be made,

commonly a Yes/No question or True/False test.

Connector: A small, labelled, circular flow chart shape used to

indicate a jump in the process flow. Connectors are generally used in

complex or multi-sheet diagrams.

Data: A parallelogram that indicates data input or output (I/O) for a

process. Examples: Get X from the user, Display X.

Delay: used to indicate a delay or wait in the process for input from

some other process.

Arrow: used to show the flow of control in a process. An arrow

coming from one symbol and ending at another symbol represents that

control passes to the symbol the arrow points to.

These are the basic symbols used generally. Now, the basic guidelines

for drawing a flowchart with the above symbols are that:

� In drawing a proper flowchart, all necessary requirements

should be listed out in logical order.

� The flowchart should be neat, clear and easy to follow. There

should not be any room for ambiguity in understanding the

flowchart.

� The flowchart is to be read left to right or top to bottom.

� A process symbol can have only one flow line coming out of it.

INTRODUCTION TO C++ UNIT 1

INSTITUTE OF DISTANCE & OPEN LEARNING 14

� For a decision symbol, only one flow line can enter it, but

multiple lines can leave it to denote possible answers.

� The terminal symbols can only have one flow line in

conjunction with them.

Example:

Consider another problem of finding the largest number between A and

B

Algorithm for the above problem is as follows:

Read A, B

If A is less than B

BIG=B

SMALL = A

Else

BIG=A

SMALL = B

Write (Display) BIG, SMALL

Flowchart for the above algorithm will look like:

INTRODUCTION TO C++ UNIT 1

INSTITUTE OF DISTANCE & OPEN LEARNING 15

1.4.5 Types of Flowcharts:

� High-Level Flowchart:

A high-level (also called first-level or top-down) flowchart

shows the major steps in a process. It illustrates a "birds-eye view"

of a process. It can also include the intermediate outputs of each

step (the product or service produced), and the sub-steps involved.

Such a flowchart offers a basic picture of the process and identifies

the changes taking place within the process. It is significantly

useful for identifying appropriate team members (those who are

involved in the process) and for developing indicators for

monitoring the process because of its focus on intermediate

outputs.

Most processes can be adequately portrayed in four or five

boxes that represent the major steps or activities of the process. In

fact, it is a good idea to use only a few boxes, because doing so

forces one to consider the most important steps. Other steps are

usually sub-steps of the more important ones.

Given below is an example of High-Level Flowchart of an

Order Filling Process. It provides the most important steps required

in the process.

� Detailed Flowchart:

INTRODUCTION TO C++ UNIT 1

INSTITUTE OF DISTANCE & OPEN LEARNING 16

The detailed flowchart provides a detailed picture of a process

by mapping all of the steps and activities that occur in the process.

This type of flowchart indicates the steps or activities of a process

and includes such things as decision points, waiting periods, tasks

that frequently must be redone (rework), and feedback loops. This

type of flowchart is useful for examining areas of the process in

detail and for looking for problems or areas of inefficiency.

Given below is the Detailed Flowchart of an Order Filling

Process which shows the sub-steps involved in the process and also

reveals the delays that occur when the materials required are not

available in the inventory.

INTRODUCTION TO C++ UNIT 1

INSTITUTE OF DISTANCE & OPEN LEARNING 17

Software:

Any drawing program can be used to create flowchart

diagrams. Some tools offer special support for flowchart drawing.

Now-a-days many software packages exist that can create flowcharts

automatically, either directly from source code, or from a flowchart

description language. On-line Web-based versions of such programs

are available.

INTRODUCTION TO C++ UNIT 1

INSTITUTE OF DISTANCE & OPEN LEARNING 18

Check Your Progress:

1) Write an algorithm for finding N factorial and draw the

corresponding flowchart.

[Where N! = 1*2*3*.........*(N-1)*N]

2) Draw flowchart to find the sum of first 10 natural numbers.

1.5 PROGRAM DESIGN

Program Design is the phase of computer program

development in which the hardware and software resources needed by

the program are identified and the logic to be used by the program is

determined. Program Design consists of the steps a programmer

should do before they start coding the program in a specific language.

These steps when properly documented will make the completed

program easier for other programmers to maintain in the future.

The programming process is similar in approach and creativity

to writing a paper. In composition, you are writing to express ideas; in

programming you are expressing a computation. Both the programmer

and the writer must adhere to the syntactic rules (grammar) of a

particular language. In prose, the fundamental idea-expressing unit is

the sentence; in programming, two units - statements and comments -

are available.

An important difference between programming and

composition is that in programming you are writing for two audiences:

people and computers. As for the computers, what you write is “read”

by interpreters and compilers specific to the language you used. They

are very rigid about syntactic rules, and perform exactly the

calculations you say.

Humans demand even more from programs. This audience

consists of two main groups, whose goals can conflict. The larger of

the two groups consists of users. Users care about how the program

presents itself, its user interface, and how quickly the program runs,

how efficient it is. To satisfy this audience, programmers may use

statements that are overly terse because they know how to make the

program more readable by the computer’s compiler, enabling the

compiler to produce faster, but less human-intelligible program. This

approach causes the other portion of the audience, i.e. programmers, to

boo and hiss. The smaller audience, of which you are also a member,

must be able to read the program so that they can enhance and/or

change it.

A characteristic of programs is that you and others will seek to

modify your program in the future. The program’s meaning is

conveyed by statements, and is what the computer interprets. Humans

INTRODUCTION TO C++ UNIT 1

INSTITUTE OF DISTANCE & OPEN LEARNING 19

read this part, which in virtually all languages bears a strong

relationship to mathematical equations, and also read comments.

Comments are not read by the computer at all, but are there to help

explain what might be expressed in a complicated way by

programming language syntax. The document or program you write

today should be understandable tomorrow, not only by you, but also by

others. The program’s organization should be easy to follow and the

way you write the program, using both statements and comments,

should help you and others understand how the computation proceeds.

The existence of comments permits the writer to directly express the

program’s outline in the program to help the reader comprehend the

computation.

As a consequence, program design must be extremely

structured, having the ultimate intentions of performing a specific

calculation efficiently with attractive, understandable, efficient

programs. Achieving these general goals means breaking the program

into components, writing and testing them separately, then merging

them according to the outline.

1.5.1 Activities involved in program design:

There are three broad areas of activities that are considered during

program design:

� Understanding the Program

� Using Design Tools to Create a Model

� Develop Test Data

Understanding the Program:

If you are working on a project as a one of many programmers,

the system analyst may have created a variety of documentation items

that will help you understand what the program is to do. These could

include screen layouts, narrative descriptions, documentation showing

the processing steps, etc. Understanding the purpose of a program

usually involves understanding it's:

� Inputs

� Processing

� Outputs

This IPO approach works very well for beginning

programmers. Sometimes, it might help to visualize the programming

running on the computer. You can imagine what the monitor will look

like, what the user must enter on the keyboard and what processing or

manipulations will be done.

Using Design Tools to Create a Model:

At first you will not need a hierarchy chart because your first

programs will not be complex. But as they grow and become more

INTRODUCTION TO C++ UNIT 1

INSTITUTE OF DISTANCE & OPEN LEARNING 20

complex, you will divide your program into several modules (or

functions).

The first modelling tool you will usually learn is pseudocode.

You will document the logic or algorithm of each function in your

program. At first, you will have only one function, and thus your

pseudocode will follow closely the IPO approach above.

There are several methods or tools for planning the logic of a

program. They include: flowcharting, hierarchy or structure charts,

pseudocode, etc. Programmers are expected to be able to understand

and do flowcharting and pseudocode. Several standards exist for

flowcharting and pseudocode and most are very similar to each other.

However, most companies have their own documentation standards

and styles. Programmers are expected to be able to quickly adapt to

any flowcharting or pseudocode standards for the company at which

they work.

Understanding the logic and planning the algorithm on paper

before you start to code is very important concept. Many students

develop poor habits and skipping this step is one of them.

Develop Test Data:

Test data consists of the user providing some input values and

predicting the outputs. This can be quite easy for a simple program and

the test data can be used to check the model to see if it produces the

correct results.

 The fundamental components of good program design are:

1) Problem definition, leading to a program specification,

2) Modular program design, which refines the specification,

3) Module composition, which translates specification into

executable program,

4) Module/program evaluation and testing, during which you

refine the program and find errors,

5) Program documentation, which pervades all other phases.

The result of following these steps is an efficient, easy-to-use

program that has a user’s guide (how does someone else run your

program) and internal documentation so that other programmers can

decipher the algorithm.

In employing programming languages to create software there

are distinctly different approaches available. The two most common

ones are “procedural programming” and “object-oriented

programming”. The two approaches differ in the way that the software

development and maintenance are planned and implemented.

Procedures may use objects, and objects usually use procedures, called

methods. Usually the object-oriented code takes more planning and is

significantly larger, but it is generally accepted to be easier to

INTRODUCTION TO C++ UNIT 1

INSTITUTE OF DISTANCE & OPEN LEARNING 21

maintain. Today when one can have literally millions of users active

for years or decades, maintenance considerations are very important.

1.5.2 Object-Oriented Formulations:

The process of creating an “object-oriented” (OO) formulation

in program design involves at least three stages: Object-Oriented

Analysis (OOA), Object-Oriented Design (OOD), and Object-Oriented

Programming (OOP).

Steps to be considered for OOA and OOD procedures are given

below. Also listed below are seven steps necessary to achieve object-

orientedness in an implementation language.

1.5.2.1 Steps in Object-Oriented Analysis:

� Find objects and classes:

� Create an abstraction of the problem domain.

� Give attributes behaviours, classes, and objects meaningful

names.

� Identify structures pertinent to the system’s complexity and

responsibilities.

� Observe information needed to interact with the system, as

well as information to be stored.

� Look for information re-use; are there multiple structures;

can sub-systems be inherited?

� Define the attributes:

� Select meaningful names.

� Describe the attribute and any constraints.

� What knowledge does it possess or communicate?

� Put it in the type or class that best describes it.

� Select accessibility as public or private.

� Identify the default, lower and upper bounds.

� Identify the different states it may hold.

� Note items that can either be stored or re-computed.

INTRODUCTION TO C++ UNIT 1

INSTITUTE OF DISTANCE & OPEN LEARNING 22

� Define the behaviour:

� Give the behaviours meaningful names.

� What questions should each be able to answer?

� What services should it provide?

� Which attribute components should it access?

� Define its accessibility (public or private).

� Define its interface prototype.

� Define any input/output interfaces.

� Identify a constructor with error checking to supplement the

intrinsic constructor.

� Identify a default constructor.

� Diagram the system:

� Employ an OO graphical representation.

1.5.2.2 Steps in Object-Oriented Design:

� Improve and add to the OOA results during OOD.

� Divide the member functions into constructors, accessors,

agents and servers.

� Design the human interaction components.

� Design the task management components.

� Design the data management components.

� Identify operators to be overloaded.

� Identify operators to be defined.

� Design the interface prototypes for member functions and for

operators.

� Design code for re-use through “kind of” and “part of”

hierarchies.

� Identify base classes from which other classes are derived.

� Establish the exception handling procedures for all possible

errors.

1.5.2.3 Steps to achieve Object-Orientedness:

1 Object-based modular structure:

� Systems are modularized on the basis of their data structure.

2 Data Abstraction:

� Objects should be described as implementations of abstract

data types.

3 Automatic memory management:

� Unused objects should be de-allocated by the language

system.

4 Classes:

� Every non-simple type is a module, and every high-level

module is a type.

5 Inheritance:

INTRODUCTION TO C++ UNIT 1

INSTITUTE OF DISTANCE & OPEN LEARNING 23

� A class may be defined as an extension or restriction of

another.

6 Polymorphism and dynamic binding:

� Entities are permitted to refer to objects of more than one

class and operations can have different realizations in

different classes.

7 Multiple inheritances:

� Can declare a class as heir to more than one class.

1.6 SUMMARY

� Algorithm is the sequence of steps to be performed in order to

solve a problem by the computer.

� Three reasons for using algorithms are efficiency, abstraction

and reusability.

� Algorithms can be expressed in many different notations,

including natural languages, pseudocode, flowcharts and

programming languages.

� Analysis of algorithms is the theoretical study of computer

program performance and resource usage, and is often practised

abstractly without the use of specific programming language or

implementation.

� The practical goal of algorithm analysis is to predict the

performance of different algorithms in order to guide program

design decisions.

� Most algorithms do not perform the same in all cases; normally

an algorithm’s performance varies with the data passed to it.

Typically, three cases are recognized: the best case, average

case and worst case.

� Worst case analysis of algorithms is considered to be crucial to

applications such as games, finance and robotics.

� O-notation, also known as Big O-notation, is the most common

notation used to express an algorithm’s performance in a

formal manner.

� Flowchart is a graphical or symbolic representation of an

algorithm. It is the diagrammatic representation of the step-by-

step solution to a given problem.

� Flowcharts are used in analyzing, designing, documenting or

managing a process or program in various fields.

� Benefits of using flowcharts include ease of communication,

effective and efficient analysis and coding, proper

documentation and maintenance.

� Limitations of using flowcharts include complex logic and

multiple modifications.

� The types of flowcharts are High-Level Flowchart and Detailed

Flowchart.

� Program Design consists of the steps a programmer should do

before they start coding the program in a specific language.

INTRODUCTION TO C++ UNIT 1

INSTITUTE OF DISTANCE & OPEN LEARNING 24

� Program design must be extremely structured, having the

ultimate intentions of performing a specific calculation

efficiently with attractive, understandable, efficient programs.

� Three broad areas of activities in program design are 1)

Understanding the Program, 2) Using Design Tools to Create a

Model and 3) Develop Test Data

� The process of creating an OO formulation in program design

involves at three stages: 1) OOA, 2) OOD, and 3) OOP.

1.7 UNIT END EXERCISES

1.7.1 Questions:

These questions are intended as a self-test for readers.

1) Define an algorithm and state the benefits and reasons of using

algorithms?

2) Explain the common approaches used in designing an

algorithm?

3) What is algorithm analysis and why is it important?

4) Explain worst-case analysis of algorithms?

5) Explain O-notation with an example?

6) State the rules for O-notation?

7) What is a flowchart? Explain with suitable examples.

8) State the advantages and limitations of using flowcharts?

9) What is program design? Explain the steps involved in program

design.

10) State the fundamental components of a good program design?

11) What are the steps involved in Object-Oriented Analysis?

12) What are the steps involved in Object-Oriented Design?

1.7.2 Programming Projects:

Writing programs that solve the Programming Projects helps to

solidify your understanding of the material and demonstrates how the

chapter’s concepts are applied.

1) Write an algorithm to find the sum of first 50 natural numbers

and also draw the corresponding flowchart.

INTRODUCTION TO C++ UNIT 1

INSTITUTE OF DISTANCE & OPEN LEARNING 25

2) Write an algorithm to read a number N from the user and print

all its divisors.

3) Write an algorithm to find the sum of given N numbers and

also draw the corresponding flowchart.

4) Write an algorithm to compute the sum of the squares of

integers from 1 to 50 and also draw the corresponding

flowchart. Assuming that you have to code the above given

problem, show the steps involved in program design.

5) Draw a flowchart explaining the process of waking up in the

morning. [Hint: Use steps Alarm Ringing, Ready to get up,

Hitting snooze button, climbing out of bed]

1.8 FURTHER READING

An Introduction to the Analysis of Algorithms by Sedgewick, Robert,

and Philippe Flajolet.

Fundamental Algorithms, Third Edition by Knuth, Donald.

Wikipedia page on Algorithm, Flowchart and Program Design.

wikipedia.org/wiki/algorithm

wikipedia.org/wiki/flowchart

wikipedia.org/wiki/program_design

Introduction to Algorithms, Second Edition by Thomas H.

Cormen

����������������

INTRODUCTION TO C++ UNIT 1

INSTITUTE OF DISTANCE & OPEN LEARNING 26

2
Introduction to C++

Unit Structure:

2.1 Objectives

2.2 Introduction

2.3 Origin of C++

2.4 Applications of C++

2.5 C and C++

2.6 Simple C++ program

2.7 Programming Tips

2.8 Suggestions for C programmers

2.9 Pitfalls

2.10 Testing and Debugging

2.11 Summary

2.12 Unit End Exercises

2.12.1 Fill in the blanks

2.12.2 Questions

2.13 Further Reading

2.1 OBJECTIVES

After completing this chapter, you will be able to:

� Understand the origin and history of C++

� Identify the applications that use C++

� Understand simple C++ programs

� Identify the pitfalls for C++, and

� Write better C++ programs using programming tips

2.2 INTRODUCTION

The most important thing to do when learning C++ is to focus

on concepts and not get lost in language-technical details. The purpose

of learning a programming language is to become a better programmer;

that is, to become more effective at designing and implementing new

systems and at maintaining old ones. For this, an appreciation of

programming and design techniques is far more important than an

understanding of details; that understanding comes with time and

practice.

INTRODUCTION TO C++ UNIT 1

INSTITUTE OF DISTANCE & OPEN LEARNING 27

2.3 ORIGIN AND HISTORY OF C++

C++ is an object oriented programming language. It was

developed by Bjarne Stroustrup at AT&T Bell Laboratories in Murray

Hill, New Jersey, USA, in the early 1980’s. Stroustrup, an admirer of

Simula67 and a strong supporter of C, wanted to combine the best of

both the languages and create a more powerful language that could

support object-oriented programming features and still retain the power

and elegance of C. The result was C++.

A programming language serves two related purposes: it

provides a vehicle for the programmer to specify actions to be

executed, and it provides a set of concepts for the programmer to use

when thinking about what can be done. The first purpose ideally

requires a language that is “close to the machine” so that all important

aspects of a machine are handled simply and efficiently in a way that is

reasonably obvious to the programmer. The second purpose ideally

requires a language that is “close to the problem to be solved” so that

the concepts of a solution can be expressed directly and concisely. The

facilities added to C to create C++ were primarily designed keeping

these purposes in mind.

C++ is regarded as a middle-level language, as it comprises a

combination of both high-level and low-level language features. C++

was developed as an enhancement to the C language and originally

named C with classes.

The main source of inspiration for C++ was C and hence it was

initially called C with classes. C is retained as a subset and also C’s

emphasis on facilities that are low-level enough to cope with the most

demanding systems programming tasks. The other main source of

inspiration was Simula67; the class concept (with derived classes and

virtual functions) was borrowed from it. C++’s facility for overloading

operators and the freedom to place a declaration wherever a statement

can occur resembles Algol68. Templates were partly inspired by Ada’s

generics (both their strengths and weaknesses) and partly by Clu’s

parameterized modules. Similarly, the C++ exception handling

mechanism was inspired partly by Ada, Clu, and ML.

The name C++ (pronounced ‘‘see plus plus’’) was coined by

Rick Mascitti in 1983. The name signifies the evolutionary nature of

the changes from C; ‘‘++’’ is the C increment operator. The slightly

shorter name ‘‘C+’’ is a syntax error; it has also been used as the name

of an unrelated language. Connoisseurs of C semantics find C++

inferior to ++C. The language is also not called D, because it is an

extension of C, and it does not attempt to remedy problems by

removing features.

After years of development, the C++ programming language

standard was ratified in 1998 as ISO/IEC 14882:1998. That standard is

still current, but is amended by the 2003 technical corrigendum,

ISO/IEC 14882:2003.

INTRODUCTION TO C++ UNIT 1

INSTITUTE OF DISTANCE & OPEN LEARNING 28

2.4 APPLICATIONS OF C++

As one of the most popular programming languages ever

created, C++ is used by hundreds of thousands of programmers in

essentially every application domain. Some of its application domains

include systems software, application software, device drivers,

embedded software, high-performance server and client applications,

and entertainment software such as video games. C++ has greatly

influenced many other popular programming languages, most notable

C# and Java. C++ is also used for hardware design, where design is

initially described in C++. Below a few of its applications are

mentioned elaborately:

� Early applications tended to have a strong systems

programming flavor. For example, several major operating

systems have been written in C++ and many more have key

parts done in C++.

� C++ provides uncompromising low-level efficiency essential

for device drivers and other software that rely on direct

manipulation of hardware under real-time constraints. In such

code, predictability of performance is at least as important as

raw speed.

� Most applications have sections of code that are critical for

acceptable performance. For most code, maintainability, ease of

extension, and ease of testing is key. C++’s support for these

concerns has led to its widespread use where reliability is a

must and in areas where requirements change significantly over

time. Examples are banking, trading, insurance,

telecommunications, and military applications.

� Graphics and user interfaces are areas in which C++ is heavily

used. Anyone who has used either an Apple Macintosh or a PC

running Windows has indirectly used C++ because the primary

user interfaces of these systems are C++ programs. In addition,

some of the most popular libraries supporting X for UNIX are

written in C++. Thus, C++ is a common choice for the vast

number of applications in which the user interface is a major

part.

2.5 C AND C++

Although C was restricted to the UNIX programming

environment, C++ was never restricted to UNIX. It simply used UNIX

and C as a model for the relationships between language, libraries,

compilers, linkers, execution environments etc. That minimal model

helped C++ to be successful on essentially every computing platform.

Many books will highlight the above mentioned and other

differences between C and C++; however the reason for C to be chosen

as the base language does go unnoticed by people.

C was chosen as the base language for C++ because it

INTRODUCTION TO C++ UNIT 1

INSTITUTE OF DISTANCE & OPEN LEARNING 29

� is versatile, terse, and relatively low-level;

� is adequate for most systems programming tasks;

� runs everywhere and on everything; and

� fits into the UNIX programming environment.

C has its problems, but a language designed from scratch would

have some too, and we know C’s problems. Importantly, working with

C enabled ‘‘C with Classes’’ to be a useful tool within months of the

first thought of adding Simula-like classes to C.

Knowing C is not a prerequisite for learning C++.

Programming in C encourages many techniques and tricks that are

rendered unnecessary by C++ language features. For example, explicit

type conversion (casting) is less frequently needed in C++ than it is in

C. However, good C programs tend to be C++ programs. For

example, every program in Kernighan and Ritchie, The C

Programming Language (2nd Edition), is a C++ program. Experience

with any statically typed language will be a help when learning C++.

2.6 A SIMPLE C++ PROGRAM

Before looking at how to write C++ programs consider the

following simple example program

// my first program in C++

#include <iostream.h>

using namespace std;

int main ()

{

 cout << "Hello World!";

 return 0;

}

The previous program is the typical program that programmer

apprentices write for the first time, and its result is the printing on

screen of the "Hello World!" sentence. It is one of the simplest

programs that can be written in C++, but it already contains the

fundamental components that every C++ program has. We are going to

look line by line at the code we have just written:

// my first program in C++

This is a comment line. All lines beginning with two slash signs

(//) are considered comments and do not have any effect on the

behaviour of the program. The programmer can use them to include

short explanations or observations within the source code itself. In this

case, the line is a brief description of what our program is.

#include <iostream>

Lines beginning with a hash sign (#) are directives for the

preprocessor. They are not regular code lines with expressions but

INTRODUCTION TO C++ UNIT 1

INSTITUTE OF DISTANCE & OPEN LEARNING 30

indications for the compiler's preprocessor. In this case the directive

#include<iostream> tells the preprocessor to include the iostream

standard file. This specific file (iostream) includes the declarations of

the basic standard input-output library in C++, and it is included

because its functionality is going to be used later in the program.

using namespace std;

All the elements of the standard C++ library are declared

within what is called a namespace, the namespace with the name std.

So in order to access its functionality we declare with this expression

that we will be using these entities. This line is very frequent in C++

programs that use the standard library.

int main ()

This line corresponds to the beginning of the definition of the

main function. The main function is the point by where all C++

programs start their execution, independently of its location within the

source code. It does not matter whether there are other functions with

other names defined before or after it - the instructions contained

within this function's definition will always be the first ones to be

executed in any C++ program. For that same reason, it is essential that

all C++ programs have a main function. The word main is followed in

the code by a pair of parentheses (()). That is because it is a function

declaration. In C++, what differentiate a function declaration from

other expressions are the parentheses that follow its name. Optionally,

these parentheses may enclose a list of parameters within them. Right

after these parentheses we can find the body of the main function

enclosed in braces ({}). What is contained within these braces is what

the function does when it is executed.

cout << "Hello World!";

This line is a C++ statement. A statement is a simple or

compound expression that can actually produce some effect. In fact,

this statement performs the only action that generates a visible effect in

our first program. cout represents the standard output stream in C++,

and the meaning of the entire statement is to insert a sequence of

characters (in this case the Hello World sequence of characters) into

the standard output stream (which usually is the screen). cout is

declared in the iostream standard file within the std namespace, so

that's why we needed to include that specific file and to declare that we

were going to use this specific namespace earlier in our code. Notice

that the statement ends with a semicolon character (;). This character is

used to mark the end of the statement and in fact it must be included at

the end of all expression statements in all C++ programs (one of the

most common syntax errors is indeed to forget to include some

semicolon after a statement).

return 0;

The return statement causes the main function to finish. return

may be followed by a return code (in our example is followed by the

INTRODUCTION TO C++ UNIT 1

INSTITUTE OF DISTANCE & OPEN LEARNING 31

return code 0). A return code of 0 for the main function is generally

interpreted as the program worked as expected without any errors

during its execution. This is the most usual way to end a C++ console

program.

You may have noticed that not all the lines of this program

perform actions when the code is executed. There were lines

containing only comments (those beginning by //). There were lines

with directives for the compiler's pre-processor (those beginning by #).

Then there were lines that began the declaration of a function (in this

case, the main function) and, finally lines with statements (like the

insertion into cout), which were all included within the block delimited

by the braces ({}) of the main function.

The program has been structured in different lines in order to

be more readable, but in C++, we do not have strict rules on how to

separate instructions in different lines. For example, instead of

int main ()

{

 cout << " Hello World!";

 return 0;

}

We could have written:

int main () { cout << "Hello World!"; return 0; }

All in just one line and this would have had exactly the same

meaning as the previous code. In C++, the separation between

statements is specified with an ending semicolon (;) at the end of each

one, so the separation in different code lines does not matter at all for

this purpose. We can write many statements per line or write a single

statement that takes many code lines. The division of code in different

lines serves only to make it more legible and schematic for the humans

that may read it.

At this stage let us consider the general format of a C++ program:

// Introductory comment

// file name, programmer, when written or modified

// what program does

#include <iostream.h>

void main()
{
constant declarations

variable declarations

executable statements
}

Note that it makes complex programs much easier to interpret

if, as above, closing braces (}) are aligned with the corresponding

INTRODUCTION TO C++ UNIT 1

INSTITUTE OF DISTANCE & OPEN LEARNING 32

opening brace ({). However other conventions are used for the layout

of braces in textbooks and other C++ programmers' programs. Also

additional spaces, new lines etc. can also be used to make programs

more readable. The important thing is to adopt one of the standard

conventions and stick to it consistently.

The format given above is the general format of a C++

program. Although this structure will also include the class declaration

and member functions definitions but we will come elaborate on that

part later.

Before looking at how to write C++ programs consider another sample

program.

// Sample program

// Reads values for the length and width of a rectangle

// and returns the perimeter and area of the rectangle.

#include <iostream.h>

void main()

{

 int length, width;

 int perimeter, area; // declarations

 cout << "Length = "; // prompt user

 cin >> length; // enter length

 cout << "Width = "; // prompt user

 cin >> width; // input width

 perimeter = 2*(length + width); // compute

perimeter

 area = length * width; // compute area

 cout << endl

 << "Perimeter is " << perimeter;

 cout << endl

 << "Area is " << area

 << endl; // output results

} // end of main program

The following points should be noted in the above program:

1) Any text from the symbols // until the end of the line is ignored

by the compiler. This facility allows the programmer to insert

Comments in the program. Every program should at least have

a comment indicating the programmer's name, when it was

written and what the program actually does. Any program that

is not very simple should also have further comments

indicating the major steps carried out and explaining any

particularly complex piece of programming. This is essential if

the program has to be amended or corrected at a later date.

2) The line

#include <iostream.h>

causes the compiler to include the text of the named file (in this

case iostream.h) in the program at this point. The file

iostream.h is a system supplied file which has definitions in it

which are required if the program is going to use stream input

INTRODUCTION TO C++ UNIT 1

INSTITUTE OF DISTANCE & OPEN LEARNING 33

or output. All your programs will include this file. This

statement is a compiler directive -- that is it gives information

to the compiler but does not cause any executable code to be

produced.

3) The actual program consists of the function main which

commences at the line

void main()

All programs must have a function main. Note that the opening

brace ({) marks the beginning of the body of the function,

while the closing brace (}) indicates the end of the body of the

function. The word void indicates that main does not return a

value. Running the program consists of obeying the statements

in the body of the function main.

4) The body of the function main contains the actual code which

is executed by the computer and is enclosed, as noted above, in

braces {}.

5) Every statement which instructs the computer to do something

is terminated by a semi-colon. Symbols such as main(), { } etc.

are not instructions to do something and hence are not followed

by a semi-colon.

6) Sequences of characters enclosed in double quotes are literal

strings. Thus instructions such as

cout << "Length = "

send the quoted characters to the output stream cout. The

special identifier endl when sent to an output stream will cause

a newline to be taken on output.

7) All variables that are used in a program must be declared and

given a type. In this case all the variables are of type int, i.e.

whole numbers. Thus the statement

int length, width;

declares to the compiler that integer variables length and width

are going to be used by the program. The compiler reserves

space in memory for these variables.

8) Values can be given to variables by the assignment statement,

e.g. the statement

area = length*width;

evaluates the expression on the right-hand side of the equals

sign using the current values of length and width and assigns

the resulting value to the variable area.

9) Layout of the program is quite arbitrary, i.e. new lines, spaces

etc. can be inserted wherever desired and will be ignored by the

compiler. The prime aim of additional spaces, new lines, etc. is

INTRODUCTION TO C++ UNIT 1

INSTITUTE OF DISTANCE & OPEN LEARNING 34

to make the program more readable. However superfluous

spaces or new lines must not be inserted in words like main,

cout, in variable names or in strings (unless you actually want

them printed).

2.7 PROGRAMMING TIPS

A. Put the constant on the left in a conditional:

We’ve all experienced bugs like this:

while (continue = TRUE)

{

// ...this loops forever!

}

This type of problem can be solved by putting the constant on

the left, so if you leave out an = in a conditional, you will get a

compiler error instead of a program bug (because constants are non

lvalues, of course):

while (TRUE = continue)

{

// compile error!

}

B Use exceptions:

Use the try/throw/catch mechanisms in C++ - they are very

powerful. Many people implement an exception class, which they use

for general error reporting throughout their program.

class ProgramException

{

// pass in a pointer to string, make sure string still

exists when

// the PrintError() method is called

ProgramException(const char* const szErrorMsg =

NULL)

{

if (NULL == szErrorMsg)

m_szMsg = "Unspecified error";

else

m_szMsg = szErrorMsg;

};

void PrintError()

{

cerr << m_szMsg << endl;

};

};

void OpenDataFile(const char* const szFileName)

{

assert(szFileName);

if (NULL == fopen(szFileName, "r"))

throw ProgramException("File not found");

INTRODUCTION TO C++ UNIT 1

INSTITUTE OF DISTANCE & OPEN LEARNING 35

// ...

}

int main(void)

{

try

{

OpenDataFile("foo.dat");

}

catch (ProgramException e)

{

e.PrintError();

return EXIT_FAILURE;

}

return EXIT_SUCCESS;

}

C. Virtual functions:

In C++ virtual functions are used for enabling Polymorphism.

Following two important points need to be noted while using virtual

functions:

� A function declared as virtual in the base class should to be

declared as virtual in the derived class as well.

� A class which has a member function declared as virtual needs

to have its destructor to be defined as virtual as well. This is

required for proper calls to the destructor up the class

hierarchy.

D. Don’t ignore API function return values:

Most API functions will return a particular value which

represents an error. You should test for these values every time you

call the API function. If you don’t want to clutter your code with error-

testing then wrap the API call in another function (do this when you

are thinking about portability too) which tests the return value and

either asserts, handles the problem, or throws an exception. The above

example of OpenDataFile is a primitive way of wrapping fopen with

error-checking code which throws an exception if fopen fails.

E. Be consistent:

Be consistent in the way you write your code. Use the same

indentation and bracketing style everywhere. If you put the constant on

the left in a conditional, do it everywhere. If you assert on your

pointers, do it everywhere. Use the same kind of comment style for the

same kind of comments. If you are the type to go in for a naming

convention (like Hungarian notation), then you have to stick to it

everywhere. Don’t do int iCount in one place and int nCount in

another.

F. Identifier clashes between source files:

INTRODUCTION TO C++ UNIT 1

INSTITUTE OF DISTANCE & OPEN LEARNING 36

In C++, variables and functions are by default public, so that

any C++ source file may refer to global variables and functions from

another C source file. This is true even if the file in question does not

have a declaration or prototype for the variable or function. You must,

therefore, ensure that the same symbol name is not used in two

different files. If you don’t do this you will get linker errors and

possibly warnings during compilation.

2.8 SUGGESTIONS FOR C PROGRAMMERS

 The better one knows C, the harder it seems to be to avoid

writing C++ in C style, thereby losing some of the potential benefits of

C++. Here are a few pointers to the areas in which C++ has better ways

of doing something than C has:

1) Macros are almost never necessary in C++. Use const or enum

to define manifest constants, inline to avoid function-calling

overhead, templates to specify families of functions and types,

and namespaces to avoid name clashes.

2) Don’t declare a variable before you need it so that you can

initialize it immediately. A declaration can occur anywhere a

statement can, in for-statement initializers, and in conditions.

3) Don’t use malloc (). The new operator does the same job better,

and instead of realloc (), try a vector.

4) Try to avoid void*, pointer arithmetic, unions, and casts, except

deep within the implementation of some function or class. In

most cases, a cast is an indication of a design error. If you must

use an explicit type conversion, try using one of the ‘‘new

casts’’ for a more precise statement of what you are trying to

do.

5) Minimize the use of arrays and C-style strings. The C++

standard library string and vector classes can often be used to

simplify programming compared to traditional C style. In

general, try not to build yourself what has already been

provided by the standard library.

Most important, try thinking of a program as a set of interacting

concepts represented as classes and objects, instead of as a bunch of

data structures with functions twiddling their bits.

2.9 PITFALLS

Pitfall is a C++ code that compiles, links, runs but does

something different than you expect. This is an attempt to provide an

overview of many of the C++ pitfalls that beg content to moderately

experienced C++ programmers often fail to understand. Please note

that this is not an attempt to replace a good C++ reference, but simply

INTRODUCTION TO C++ UNIT 1

INSTITUTE OF DISTANCE & OPEN LEARNING 37

to provide an introduction to some often misunderstood concepts and

to point out their usefulness.

Example:

 if (-0.5 <= x <= 0.5) return 0;

Pitfall:

 if (-0.5 <= x <= 0.5) return 0;

This expression does not test the mathematical condition

 -0.5 <= x <= 0.5

Instead, it first computes -0.5 <= x, which is 0 or 1, and then

compares the result with 0.5.

Even though C++ now has a bool type, Booleans are still freely

convertible to int. Since bool->int is allowed as a conversion, the

compiler cannot check the validity of expressions.

A. References:

References are a way of assigning a "handle" to a variable.

There are two places where this is used in C++. We'll discuss both of

them briefly.

Assigning References:

This is the less often used variety of references, but still worth

noting as an introduction to the use of references in function

arguments. Here we create a reference that looks and acts like a

standard C++ variable except that it operates on the same data as the

variable that it references.

int foo = 3; // foo == 3

int &bar = foo; // foo == 3

bar = 5; // foo == 5

Here because we've made bar a reference to foo changing the value of

bar also changes the value of foo.

Passing Function Arguments with References:

The same concept of references is used when passing variables.

For example:

void foo(int &i)

{

 i++;

}

INTRODUCTION TO C++ UNIT 1

INSTITUTE OF DISTANCE & OPEN LEARNING 38

int main()

{

 int bar = 5; // bar == 5

 foo(bar); // bar == 6

 foo(bar); // bar == 7

 return 0;

}

Here we display one of the two common uses of references in

function arguments — they allow us to use the conventional syntax of

passing an argument by value but manipulate the value in the caller.

Note: While sometimes useful, using this style of references

can sometimes lead to counter-intuitive code. It is not clear to the

caller of foo() above that bar will be modified without consulting an

API reference.

However there is a more common use of references in function

arguments — they can also be used to pass a handle to a large data

structure without making multiple copies of it in the process. Consider

the following:

void foo(const std::string &s)

{

 std::cout << s << std::endl;

}

void bar(std::string s)

{

 std::cout << s << std::endl;

}

int main()

{

 std::string text = "This is a test.";

 foo(text); // doesn't make a copy of "text"

 bar(text); // makes a copy of "text"

 return 0;

}

In this simple example we're able to see the differences in pass

by value and pass by reference. In this case pass by value just expends

a few additional bytes, but imagine instance if text contained the text of

an entire book. The ability to pass it by reference keeps us from

needing to make a copy of the string and avoids the ugliness of using a

pointer.

It should also be noted that this only makes sense for complex

types — classes and structs. In the case of ordinal types — i.e. int,

float, bool, etc. — there is no savings in using a reference instead of

simply using pass by value.

INTRODUCTION TO C++ UNIT 1

INSTITUTE OF DISTANCE & OPEN LEARNING 39

B. Public, Protected and Private Labels:

C++ supports three labels that can be used in classes (or structs)

to define the permissions for the members in that section of the class.

These labels can be used multiple times in a class declaration for cases

where it's logical to have multiple groups of these types. These

keywords affect the permissions of the members — whether functions

or variables.

Public: This label is used to say that the methods and variables may

be accessed from any portion of the code that knows the class type.

This should usually only be used for member functions (and not

variables) and should not expose implementation details.

Protected: Only subclasses of this type may access these functions or

variables. Many people prefer to also keep this restricted to functions

(as opposed to variables) and to use accessor methods for getting to

the underlying data.

Private: This is used for methods that cannot be used in either

subclasses or other places. This is usually the domain of member

variable and helper functions. It's often useful to start off by putting

functions here and to only move them to the higher levels of access

as they are needed.

It's often misunderstood that different instances of the same

class may access each others' private or protected variables. A common

case for this is in copy constructors.

class Foo

{

public:

 Foo(const Foo &f)

 {

 m_value = f.m_value; // perfectly legal

 }

private:

 int m_value;

}

(It should however be mentioned that the above is not needed as the

default copy constructor will do the same thing.)

C. Constructor pitfalls:

D. Example:
E. int main()

 {

F. string a("Hello");

G. string b();

H. string c = string("World");

I. // ...

 return 0;

 }

INTRODUCTION TO C++ UNIT 1

INSTITUTE OF DISTANCE & OPEN LEARNING 40

J. Pitfall:
K. string b();

This expression does not construct an object b of type string.

Instead, it is the prototype for a function b with no arguments and

return type string. Remember to omit the () when invoking the

default constructor. The C feature of declaring a function in a local

scope is worthless since it lies about the true scope. Most programmers

place all prototypes in header files. But even a worthless feature that

you never use can haunt you.

2.10 TESTING AND DEBUGGING

There are lots of error conditions that happen in the normal life

of a program. For instance, file not found, out of memory, or invalid

user input. You should always handle these conditions gracefully (by

re-prompting for a filename, by freeing memory or telling the user to

quit other applications, or by telling the user there is an error in his

input, respectively). However, there are other conditions which are not

real error conditions, but are the result of bugs. For example, say you

have a routine which copies a string into a buffer, and no one is

supposed to pass in a NULL pointer to the routine. You do not want to

do something like this.

Let us look at a few of the errors that occur in C++ programs:

� Syntax errors – These errors are found by the compiler when

you compile your C++ program. Syntax errors often cascade;

correcting the first error may eliminate several following errors.

Many programmers try to correct these errors through guess

work which seldom works, however it does waste time. Most of

the time the actual error often occurs in the preceding line and

not in the line shown by the compiler.

� Logical errors – These errors are hard to find. In order to find

these errors the entire logic of the program needs to be checked

and revisited. Sometimes the algorithms and the flowcharts

drawn for the problem also need to be checked.

Correcting the above errors involves testing and debugging the

code. Testing the code involves testing each function separately using

stubs and drivers. Debugging involves displaying intermediate results

which helps in finding the bug in the program, if any.

Drivers allow you to test a function without the rest of the

program. Drivers help execute a function and show the result. Using a

loop allows you to retest the function on different arguments without

re-running the program.

//Driver program for testing swap_values

#include <iostream.h>

void swap_values(int& var1, int& var2);

int main()

{

INTRODUCTION TO C++ UNIT 1

INSTITUTE OF DISTANCE & OPEN LEARNING 41

int first, second;

char ans = ’y’;

do

{

cout << "Enter two integers: ";

cin >> first >> second;

swap_values(first, second);

cout << "Reverse order of the numbers: "

 << first << " " << second << endl;

cout << "Test again? (Type y for yes)";

cin >> ans;

cout << endl;

} while (ans == ’Y’ || ans == ’y’);

return 0;

}

void swap_values(int& var1, int& var2)

{

int temp;

temp = var1;

var1 = var2;

var2 = temp;

}

Stubs are utterly simple substitutes for a function, so you can

test the call itself without having to worry about getting the function

correct (yet). Stubs are replaced by functions one at a time. Stubs are

simple enough and give you confidence for bug-free code.

//Stub program for testing swap_values

int main()

{

int a, b;

......

......

age_of_universe(a,b);

......

......

return 0;

}

void age_of_universe(int& x, int& y)

{

x = x + 1;

y = y + 2;

// it’s really much more complex than this

cout << "Inside age_of_universe" << endl;

}

2.11 Summary

� C++ is an object oriented programming language developed by

Bjarne Stroustrup at AT&T Bell Laboratories in Murray Hill,

New Jersey, USA, in the early 1980’s.

INTRODUCTION TO C++ UNIT 1

INSTITUTE OF DISTANCE & OPEN LEARNING 42

� C++ is regarded as a middle-level language, as it comprises a

combination of both high-level and low-level language

features.

� C++ was developed as an enhancement to the C language and

originally named C with classes.

� Some of the application domains of C++ include systems

software, application software, device drivers, embedded

software, high-performance server and client applications, and

entertainment software such as video games.

� C++ has greatly influenced many other popular programming

languages, most notable C# and Java. C++ is also used for

hardware design, where design is initially described in C++

� Comments are ignored by the compiler but are there for the

information of someone reading the program. All characters

between // and the end of the line are ignored by the compiler.

� All programs must include a function main (). The body of the

function main contains the actual code which is executed by the

computer and is enclosed in braces {}.

� Every statement (executable statement) which instructs the

computer to do something is terminated by a semi-colon.

� Be consistent in the way you write your code. Use the same

indentation and bracketing style everywhere.

� Pitfall is a C++ code that compiles, links, runs but does

something different than you expect.

� C++ supports three labels (public, private and protected) that

can be used in classes (or structs) to define the permissions for

the members in that section of the class.

� Testing the code involves testing each function in order to get

the desired output.

� Debugging involves how to find a bug by displaying

intermediate results.

2.12 UNIT END EXERCISES

These questions are intended as a self-test for readers.

2.12.1 Fill in the blanks:
1) C++ was developed by _____________ at ___________.

2) C++ is regarded as _____________ language.

3) C++ was earlier called ___________.

2.12.2 Questions:

1) State the application domains that use C++?

INTRODUCTION TO C++ UNIT 1

INSTITUTE OF DISTANCE & OPEN LEARNING 43

2) What is a pitfall? Explain any one pitfall elaborately.

3) What is the purpose of the following two lines:

#include <iostream>

using namespace std;

4) Explain Syntax and Logical errors?

2.13 FURTHER READING

Scott Meyers. Effective C++: 55 Specific Ways to Improve Your

Programs and Designs. Addison-Wesley, third edition, 2007

The C++ FAQ: http://www.parashift.com/c++-faq-lite/

http://www.gmonline.demon.co.uk/cscene/CS2/CS2-01.html

http://autotoolset.sourceforge.net/tutorial.html

Bjarne Stroustrup, “The C++ Programming Language: Second

Edition”.

����������������

INTRODUCTION TO C++ UNIT 1

INSTITUTE OF DISTANCE & OPEN LEARNING 44

INTRODUCTION TO C++ UNIT II

INSTITUTE OF DISTANCE & OPEN LEARNING 1

3

Chapter 3

Variables and Assignments

Unit Structure:

3.1 Objectives

3.2 Introduction

3.3 Variables

3.4 Identifiers

3.5 Reserved Words

3.6 Declaration of Variables

3.7 Scope of Variables

3.8 Initialization of Variables

3.9 Reference Variables

3.10 Constants

3.10.1 Literal Constants

3.10.2 Symbolic Constants

3.11 Assignment Statements

3.12 Summary

3.13 Unit-End Exercises

3.13.1 Questions

3.13.2 Programming Projects

3.14 Further Reading

3.1 OBJECTIVES

After completing this chapter you will be able to

� Distinguish between variable and constant

� Identify the keywords in C++

� Declare and Initialize variables

� Identify scope of variables in a given program

� Use reference variables.

3.2 INTRODUCTION

The usefulness of the "Hello World" programs shown in the

previous section is quite questionable. We had to write several lines of

INTRODUCTION TO C++ UNIT II

INSTITUTE OF DISTANCE & OPEN LEARNING 2

code, compile them, and then execute the resulting program just to

obtain a simple sentence written on the screen as result. It certainly

would have been much faster to type the output sentence by ourselves.

However, programming is not limited only to printing simple texts on

the screen. In order to go a little further on and to become able to write

programs that perform useful tasks that really save us work we need to

introduce the concept of variable.

3.3 VARIABLES

A variable is a symbolic name for a memory location in which

data can be stored and subsequently recalled. Variables are used for

holding data values so that they can be utilized in various computations

in a program. All variables have two important attributes:

� A type which is established when the variable is defined (e.g.,

integer, real, character). Once defined, the type of a C++

variable cannot be changed.

� A value which can be changed by assigning a new value to the

variable. The kind of values a variable can assume depends on

its type. For example, an integer variable can only take integer

values (e.g., 2, 100, -12).

A variable is used for the quantities which are manipulated by a

computer program. For example a program that reads a series of

numbers and sums them will have to have a variable to represent each

number as it is entered and a variable to represent the sum of the

numbers.

Let us illustrate the uses of some simple variable.

#include <iostream.h>

int main (void)

{

int workDays;

float workHours, payRate, weeklyPay;

workDays = 5;

workHours = 7.5;

payRate = 38.55;

weeklyPay = workDays * workHours * payRate;

cout << "Weekly Pay = ";

cout << weeklyPay;

cout << '\n';

}

The above given program calculates the weekly pay using three

variables workDays, workHours, and payRate.

In order to distinguish between different variables, they must be

given identifiers. Each variable needs an identifier that distinguishes it

from the others, for example, in the previous code the variable

identifiers were weeklyPay, workDays, workHours and payRate, but

we could have called the variables any names we wanted to invent, as

long as they were valid identifiers.

INTRODUCTION TO C++ UNIT II

INSTITUTE OF DISTANCE & OPEN LEARNING 3

3.4 IDENTIFIERS

 Identifiers are names given to variables which distinguish them

from all other variables. The rules of C++ for valid identifiers state

that:

An identifier must:

� start with a letter

� consist only of letters, the digits 0-9, or the underscore symbol
_

� Not be a reserved word.

Reserved words are otherwise valid identifiers that have special

significance to C++. For the purposes of C++ identifiers, the

underscore symbol, _, is considered to be a letter. Its use as the first

character in an identifier is not recommended though, because many

library functions in C++ use such identifiers. Similarly, the use of two

consecutive underscore symbols, __, is forbidden.

The following are valid identifiers:

Length, days_in_year, DataSet1, Profit95, _Pressure,

first_one, first_1 although using _Pressure is not

recommended.

The following are invalid:
days-in-year 1data int first.val throw

Identifiers should be chosen to reflect the significance of the

variable in the program being written. Although it may be easier to

type a program consisting of single character identifiers, modifying or

correcting such a program becomes more and more difficult. The

minor typing effort of using meaningful identifiers will repay itself

many fold in the avoidance of simple programming errors when the

program is modified.

At this stage it is worth noting that C++ is case-sensitive. That

is lower-case letters are treated as distinct from upper-case letters.

Thus the word days in a program is quite different from the word Days

or the word DAYS.

3.5 RESERVED WORDS

The syntax rules (or grammar) of C++ define certain symbols

to have a unique meaning within a C++ program. These symbols, the

reserved words, must not be used for any other purposes. Reserved

words are otherwise valid identifiers that have special significance to

C++. All reserved words are in lower-case letters. The table below lists

the reserved words of C++.

INTRODUCTION TO C++ UNIT II

INSTITUTE OF DISTANCE & OPEN LEARNING 4

Some of these reserved words may not be treated as reserved

by older compilers. However you would do well to avoid their use.

Other compilers may add their own reserved words. Typical are those

used by Borland compilers for the computer, which add near, far,

huge, cdecl, and pascal.

Notice that main is not a reserved word. However, this is a

fairly technical distinction, and for practical purposes you are advised

to treat main, cin, and cout as if they were reserved as well.

3.6 DECLARATION OF VARIABLES

In C++ (as in many other programming languages) all the

variables that a program is going to use must be declared prior to use.

Declaration of a variable serves two purposes:

� It associates a type and an identifier (or name) with the

variable. The type allows the compiler to interpret statements

correctly. For example in the CPU the instruction to add two

integer values together is different from the instruction to add

two floating-point values together. Hence the compiler must

know the type of the variables so it can generate the correct add

instruction.

� It allows the compiler to decide how much storage space to

allocate for storage of the value associated with the identifier

and to assign an address for each variable which can be used in

code generation.

A typical set of variable declarations that might appear at the

beginning of a program could be as follows:

int i, j, count;

float sum, product;

char ch;

INTRODUCTION TO C++ UNIT II

INSTITUTE OF DISTANCE & OPEN LEARNING 5

bool passed_exam;

which declares integer variables i, j and count, real variables sum and

product, a character variable ch, and a boolean variable pass_exam.

A variable declaration has the form:

type identifier-list;

type specifies the type of the variables being declared. The identifier-

list is a list of the identifiers of the variables being declared, separated

by commas.

Variables may be initialised at the time of declaration by assigning a

value to them as in the following example:

int i, j, count = 0;

float sum = 0.0, product;

char ch = '7';

bool passed_exam = false;

which assigns the value 0 to the integer variable count and the value

0.0 to the real variable sum. The character variable ch is initialised with

the character 7. i, j, and product have no initial value specified, so

the program should make no assumption about their contents.

To see what variable declarations look like in action within a program,

we are going to see the following C++ code.

// operating with variables

#include <iostream>

using namespace std;

int main ()

{

 // declaring variables:

 int a, b;

 int result;

 // process:

 a = 5;

 b = 2;

 a = a + 1;

 result = a - b;

 // print out the result:

 cout << result;

 // terminate the program:

 return 0;

}

Do not worry if something else than the variable declarations

themselves looks a bit strange to you. You will see the rest in detail in

coming sections.

3.7 SCOPE OF VARIABLES

INTRODUCTION TO C++ UNIT II

INSTITUTE OF DISTANCE & OPEN LEARNING 6

 A declaration introduces a name into a scope; that is, a name

can be used only in a specific part of the program text. For a name

declared in a function (often called a local name), that scope extends

from its point of declaration to the end of the block in which its

declaration occurs. A block is a section of code delimited by a { }

pair.

 A name is called global if it is defined outside any function,

class, or namespace. The scope of a global name extends from the

point of declaration to the end of the file in which its declaration

occurs. A declaration of a name in a block can hide a declaration in an

enclosing block or a global name. That is, a name can be redefined to

refer to a different entity within a block. After exit from the block, the

name resumes its previous meaning. For example:

int x; // global x

void f()

{

 int x; // local x hides global x

 x = 1; // assign to local x

 {

 int x; // hides first local x

 x = 2; // assign to second local x

 }

 x = 3; // assign to first local x

}

int *p = &x; // take address of global x

 Hiding names is unavoidable when writing large programs.

However, a human reader can easily fail to notice that a name has been

hidden. Because such errors are relatively rare, they can be very

difficult to find. Consequently, name hiding should be minimized.

Using names such as i and x for global variables or for local variables

in a large function is asking for trouble.

 A hidden global name can be referred to using the scope

resolution operator (: :). For example:

int x;

void f2()

{

 int x = 1; // hide global x

 : :x = 2; // assign to global x

 x = 2; // assign to local x

 // ...

}

There is no way to use a hidden local name.

The scope of a name starts at its point of declaration; that is, after the

complete declarator and before the initializer.

3.8 INITIALIZATION OF VARIABLES

INTRODUCTION TO C++ UNIT II

INSTITUTE OF DISTANCE & OPEN LEARNING 7

 When declaring a regular local variable, its value is by

default undetermined. But you may want a variable to store a concrete

value at the same moment that it is declared. In order to do that, you

can initialize the variable. There are two ways to do this in C++:

 The first one, known as c-like, is done by appending an equal

sign followed by the value to which the variable will be initialized:
 type identifier = initial_value ;

For example, if we want to declare an int variable called a initialized

with a value of 0 at the moment in which it is declared, we could write:
 int a = 0;

 The other way to initialize variables, known as constructor

initialization, is done by enclosing the initial value between

parentheses

(()):
 type identifier (initial_value) ;

For example:
 int a (0);

Both ways of initializing variables are valid and equivalent in C++.

// initialization of variables

#include <iostream>

using namespace std;

int main ()

{

 int a=5; // initial value = 5

 int b(2); // initial value = 2

 int result; // initial value

undetermined

 a = a + 3;

 result = a - b;

 cout << result;

 return 0;

}

3.9 REFERENCE VARIABLES

 C++ allows you to create a second name for the variable that

you can use to read or modify the original data stored in that variable.

While this may not sound appealing at first, what this means is that

when you declare a reference and assign it a variable, it will allow you

to treat the reference exactly as though it were the original variable for

the purpose of accessing and modifying the value of the original

variable - even if the second name (the reference) is located within a

different scope.

INTRODUCTION TO C++ UNIT II

INSTITUTE OF DISTANCE & OPEN LEARNING 8

Basic Syntax:

Declaring a variable as a reference rather than a normal

variable simply entails appending an ampersand to the type name.
 type &identifier = identifier/constant;

 When a reference is created, you must tell it which variable it

will become an alias for. After you create the reference, whenever you

use the variable, you can just treat it as though it were a regular

variable. But when you create it, you must initialize it with another

variable, whose address it will keep around behind the scenes to allow

you to use it to modify that variable.

In a way, this is similar to having a pointer that always points to

the same thing. One key difference is that references do not require

dereferencing in the same way that pointers do; you just treat them as

normal variables. A second difference is that when you create a

reference to a variable, you need not do anything special to get the

memory address. The compiler figures this out for you.

int x;

int &foo = x;

// foo is now a reference to x so this sets x to 56

foo = 56;

std::cout << x <<std::endl;

The most common use of references is for function parameters.

Reference parameters facilitate the pass-by-reference style of

arguments, as opposed to the pass-by-value style. To observe the

differences, consider the three swap functions in the program below.

void Swap1 (int x, int y) // pass-by-value

(objects)

{

 int temp = x;

 x = y;

 y = temp;

}

void Swap2 (int *x, int *y) // pass-by-value

(pointers)

{

 int temp = *x;

 *x = *y;

 *y = temp;

}

void Swap3 (int &x, int &y) // pass-by-

reference

{

 int temp = x;

 x = y;

 y = temp;

}

Annotation:

INTRODUCTION TO C++ UNIT II

INSTITUTE OF DISTANCE & OPEN LEARNING 9

� Although Swap1 swaps x and y, this has no effect on the

arguments passed to the function, because Swap1 receives a

copy of the arguments. What happens to the copy does not

affect the original.

� Swap2 overcomes the problem of Swap1 by using pointer

parameters instead. By dereferencing the pointers, Swap2 gets

to the original values and swaps them.

� Swap3 overcomes the problem of Swap1 by using reference

parameters instead. The parameters become aliases for the

arguments passed to the function and therefore swap them as

intended. Swap3 has the added advantage that its call syntax is

the same as Swap1 and involves no addressing or

dereferencing.

3.10 CONSTANTS

Constants are expressions with a fixed value. C++ has two

kinds of constants: literal, and symbolic. C++ has two kinds of

constants: literal, and symbolic.

3.10.1 Literal constants:

Literal constants are literal numbers used to express particular

values within the source code of a program. They are constants

because you can’t change their values. We have already used these

previously to give concrete values to variables or to express messages

we wanted our programs to print out, for example, when we wrote:

a = 5;

the 5 in this piece of code was a literal constant.

Literal constants can be divided in Integer Numerals, Floating-

Point Numerals, Characters, Strings and Boolean Values.

Integer Numerals: They are numerical constants that identify integer

decimal values. Notice that to express a numerical constant we do not

have to write quotes (") nor any special character. In addition to

decimal numbers (those that all of us are used to use every day) C++

allows the use as literal constants of octal numbers (base 8) and

hexadecimal numbers (base 16). If we want to express an octal number

we have to precede it with a 0 (zero character). And in order to express

a hexadecimal number we have to precede it with the characters 0x

(zero, x). For example, the following literal constants are all equivalent

to each other:

75 // decimal

0113 // octal

0x4b // hexadecimal

INTRODUCTION TO C++ UNIT II

INSTITUTE OF DISTANCE & OPEN LEARNING 10

Floating-Point Numerals: They express numbers with decimals and/or

exponents. They can include either a decimal point, an e character (that

expresses "by ten at the Xth height", where X is an integer value that

follows the e character), or both a decimal point and an e character. For

example, the following are floating-point literals:

3.14159 // 3.14159

6.02e23 // 6.02 x 10^23

1.6e.19 // 1.6 x 10^.19

3.0 // 3.0

Character and String Literals: There also exist non-numerical

constants, like:

'z'

'p'

"Hello world"

"How do you do?"

The first two expressions represent single character constants,

and the following two represent string literals composed of several

characters. Notice that to represent a single character we enclose it

between single quotes (') and to express a string (which generally

consists of more than one character) we enclose it between double

quotes (").

Boolean Literals: There are only two valid Boolean values: true and

false. These can be expressed in C++ as values of type bool by using

the Boolean literals true and false.

3.10.2 Symbolic constants:

Symbolic constants can be declared in two different ways:

� using the #define preprocessor directive, and

� through use of the const keyword.

You can define your own names for constants that you use very often

without having to resort to memory consuming variables, simply by

using the #define preprocessor directive. Its format is:

 #define identifier value

For example:
 #define PI 3.14159

 #define NEWLINE '\n'

INTRODUCTION TO C++ UNIT II

INSTITUTE OF DISTANCE & OPEN LEARNING 11

This defines two new constants: PI and NEWLINE. Once they are

defined, you can use them in the rest of the code as if they were any

other regular constant, for example:

// defined constants: calculate circumference

#include <iostream>

using namespace std;

#define PI 3.14159

#define NEWLINE '\n'

int main ()

{

 double r=5.0; // radius

 double circumf;

 circumf = 2 * PI * r;

 cout << circumf;

 cout << NEWLINE;

 return 0;

}

OUTPUT: 31.4159

 In fact the only thing that the compiler preprocessor does

when it encounters #define directives is to literally replace any

occurrence of their identifier (in the previous example, these were PI

and NEWLINE) by the code to which they have been defined (3.14159

and '\n' respectively).

There are two major problems with symbolic constants

declared using #define. First, because they are resolved by the

preprocessor, which replaces the symbolic name with the defined

value, #defined symbolic constants do not show up in the debugger.

Second, #defined values always have global scope. This means value

#defined in one piece of code may have a naming conflict with a value

#defined with the same name in another piece of code.

A better way to do symbolic constants is through use of the

const keyword. Const variables must be assigned a value when

declared, and then that value cannot be changed.

const double pi = 3.14159

const char newline = ‘\n’

 Here, pi and newline are two typed constants. Although a

constant variable might seem like an oxymoron, they can be very

useful in helping to document your code. Const variables act exactly

like normal variables in every case except that they cannot be assigned

to.

3.11 ASSIGNMENT STATEMENTS

INTRODUCTION TO C++ UNIT II

INSTITUTE OF DISTANCE & OPEN LEARNING 12

The main statement in C++ for carrying out computation and

assigning values to variables is the assignment statement. For

example the following assignment statement:

average = (a + b)/2;

assigns half the sum of a and b to the variable average. The general

form of an assignment statement is:

identifier = expression ;

The expression is evaluated and then the value is assigned to

the identifier. It is important to note that the value assigned to identifier

must be of the same type as identifier.

The expression can be a single variable, a single constant or

involve variables and constants combined by the arithmetic operators.

Rounded brackets () may also be used in matched pairs in expressions

to indicate the order of evaluation.

 For example, let us have a look at the following code - I have

included the evolution of the content stored in the variables as

comments:

// assignment operator

#include <iostream>

using namespace std;

int main ()

{

 int a, b; // a:?, b:?

 a = 10; // a:10, b:?

 b = 4; // a:10, b:4

 a = b; // a:4, b:4

 b = 7; // a:4, b:7

 cout << "a:";

 cout << a;

 cout << " b:";

 cout << b;

 return 0;

}

OUTPUT:

a:4 b:7

 This code will give us as result that the value contained in a

is 4 and the one contained in b is 7. Notice how a was not affected by

the final modification of b, even though we declared a = b earlier (that

is because of the right-to-left rule).

The following expression is also valid in C++:

a = b = c = 5;

INTRODUCTION TO C++ UNIT II

INSTITUTE OF DISTANCE & OPEN LEARNING 13

It assigns 5 to the all the three variables: a, b and c.

3.12 SUMMARY

� A variable is a symbolic name for a memory location in which

data can be stored and subsequently recalled.

� A variable has two important attributes - a type and a value

� A variable declaration has the form:

• type identifier-list;

� Identifiers are names given to variables which distinguish them

from all other variables.

� Variables names (identifiers) can only include letters of the

alphabet, digits and the underscore character. They must

commence with a letter.

� Reserved words are valid identifiers that have special

significance to C++.

� C++ is case-sensitive. That is lower-case letters are treated as

distinct from upper-case letters.

� Variables can either have global scope or local scope

� All variables and constants that are used in a C++ program must

be declared before use. Declaration associates a type and an

identifier with a variable.

� C++ allows us to declare a variable anywhere in the program, as

also its initialization at run time, using the expressions at the

place of declaration.

� Reference variable is the second name for the variable that can be

used to read or modify the original data stored in that variable

� Variables can be initialized in two ways:

• type identifier = initial_value ;

• type identifier (initial_value) ;

� Literal constants are literal numbers used to express particular

values within the source code of a program.

� Literal constants can be divided in Integer Numerals, Floating-

Point Numerals, Characters, Strings and Boolean Values.

� Symbolic constants can be declared in two different ways:

INTRODUCTION TO C++ UNIT II

INSTITUTE OF DISTANCE & OPEN LEARNING 14

• using the #define preprocessor directive, and

• through use of the const keyword.

� The assignment statement in C++ is used for carrying out

computation and assigning values to variables.

� In an assignment statement, the expression on the right hand side

of the assignment is evaluated and, if necessary, converted to the

type of the variable on the left hand side before the assignment

takes place.

3.13 UNIT-END EXERCISES

3.13.1 Questions:

These questions are intended as a self-test for readers.

1) Define variable. State the important attributes of a variable.

2) Define Identifier. State the rules for valid identifiers.

3) Define global and local scope.

4) Explain reference variables with suitable examples.

5) State the different types of constants

6) Which of the following represent valid variable definitions?

a. int n = -100;

b. unsigned int i = -100;

c. signed int = 2.9;

d. long m = 2, p = 4;

e. int 2k;

f. double x = 2 * m;

g. float y = y * 2;

h. unsigned double z = 0.0;

i. double d = 0.67F;

j. float f = 0.52L;

k. signed char = -1786;

l. char c = '$' + 2;

m. sign char h = '\111';

n. char *name = "Peter Pan";

o. unsigned char *num = "276811";

7) Which of the following represent valid identifiers?

a. identifier

b. seven_11

c. _unique_

d. gross-income

e. gross$income

INTRODUCTION TO C++ UNIT II

INSTITUTE OF DISTANCE & OPEN LEARNING 15

f. 2by2

g. default

h. average_weight_of_a_large_pizza

i. variable

j. object.oriented

3.13.2 Programming Projects:

Writing programs that solve the Programming Projects helps to

solidify your understanding of the material and demonstrates how the

chapter’s concepts are applied.

1) Given the following definition of a Swap function

void Swap (int x, int y)

{

int temp = x;

x = y;

y = temp;

}

what will be the value of x and y after the following call:

x = 10;

y = 20;

Swap(x, y);

2) Assuming that n is 20, what will the following code fragment

output when executed?

if (n >= 0)

if (n < 10)

cout << "n is small\n";

else

cout << "n is negative\n";

3.14 FURTHER READING

Bjarne Stroustrup, “The C++ Programming Language: Second

Edition”.

Herbert Schildt, “The C++ Complete Reference”

E Balagurusamy, “Object Oriented Programming C++”, Third Edition.

����������������

INTRODUCTION TO C++ UNIT II

INSTITUTE OF DISTANCE & OPEN LEARNING 16

4
Data Types and Expressions

Unit Structure:

4.1 Objectives

4.2 Introduction

4.3 Data Types

4.3.1 Booleans

4.3.2 Character Types

4.3.3 Integer Types

4.3.4 Floating-Point Types

4.3.5 Sizes

4.3.6 Void

4.3.7 Enumerations

4.3.8 Pointers

4.3.9 Arrays

4.3.10 References

4.3.11 Structures

4.4 Operators

4.4.1 Arithmetic Operators

4.4.2 Relational Operators

4.4.3 Logical Operators

4.4.4 Bitwise Operators

4.4.5 Increment/Decrement Operators

4.4.6 Assignment Operator

4.4.7 Conditional Operator

4.4.8 Comma Operator

4.4.9 Scope Resolution Operator

4.4.10 Member Dereferencing Operators

4.4.11 Memory Management Operators

4.4.12 Type Cast Operator

4.5 Operator Precedence

4.6 Expressions

4.6.1 Constant Expressions

4.6.2 Integral Expressions

4.6.3 Float Expressions

4.6.4 Pointer Expressions

4.6.5 Relational Expressions

4.6.6 Logical Expressions

4.6.7 Bitwise Expressions

INTRODUCTION TO C++ UNIT II

INSTITUTE OF DISTANCE & OPEN LEARNING 17

4.7 Summary

4.8 Unit End Exercises

4.8.1 Questions

4.8.2 Programming Projects

4.9 Further Reading

4.1 OBJECTIVES
After completing this chapter you will be able to:

� Understand and Identify different data types used in C++

� Understand various operators

� Understand expressions and utilise them in programs

4.2 INTRODUCTION
The memory in our computers is organized in bytes. A byte is

the minimum amount of memory that we can manage in C++. A byte

can store a relatively small amount of data: one single character or a

small integer (generally an integer between 0 and 255). In addition, the

computer can manipulate more complex data types that come from

grouping several bytes, such as long numbers or non-integer numbers.

When programming, we store the variables in our computer's

memory, but the computer has to know what kind of data we want to

store in them, since it is not going to occupy the same amount of

memory to store a simple number than to store a single letter or a large

number, and they are not going to be interpreted the same way.

This chapter simply provides the most basic elements from

which C++ programs are constructed. You must know these elements,

plus the terminology and simple syntax that goes with them, in order to

complete a real project in C++ and especially to read code written by

others.

4.3 DATA TYPES
Every name (identifier) in a C++ program has a type associated

with it. This type determines what operations can be applied to the

name (that is, to the entity referred to by the name) and how such

operations are interpreted. For example, the declarations
float x; //x is a floating-point variable

int y = 7; //y is an integer variable with

the initial value 7

float f(int); //f is a function taking an

argument of type int and returning a floating-point

number

would make the example meaningful. Because y is declared to

be an int, it can be assigned to, used in arithmetic expressions, etc. On

the other hand, f is declared to be a function that takes an int as its

argument, so it can be called given a suitable argument.

Data types in Standard C++ are classified as shown in the

diagram below.

INTRODUCTION TO C++ UNIT II

INSTITUTE OF DISTANCE & OPEN LEARNING 18

The Boolean, character, and integer types are collectively

called integral types. The integral and floating-point types are

collectively called arithmetic types. Enumeration and structured types

are called user-defined types because they must be defined by users

rather than being available for use without previous declaration, the

way fundamental types are. In contrast, other types are called built-in

types.

The integral and floating-point types are provided in a variety

of sizes to give the programmer a choice of the amount of storage

consumed, the precision, and the range available for computations. The

assumption is that a computer provides bytes for holding characters

and words, for holding and computing - integer values, some entity

most suitable for floating-point computation, and addresses for

referring to those entities. The C++ fundamental types together with

pointers and arrays present these machine-level notions to the

programmer in a reasonably implementation independent manner.

For most applications, one could simply use bool for logical

values, char for characters, int for integer values, and double for

floating-point values. The remaining fundamental types are variations

for optimizations and special needs that are best ignored until such

needs arise. They must be known, however, to read old C and C++

code.

4.3.1 Booleans:
A Boolean, bool, can have one of the two values true or false.

A Boolean is used to express the results of logical operations. For

example:
void f(int a, int b)

{

bool b1 = a == b; / / = is assignment, == is

equality

INTRODUCTION TO C++ UNIT II

INSTITUTE OF DISTANCE & OPEN LEARNING 19

/ / ...

}

If a and b have the same value, b1 becomes true; otherwise, b1

becomes false.

A common use of bool is as the type of the result of a function that

tests some condition (a

predicate). For example:
bool is_open (File*);

bool greater(int a, int b) { return a>b; }

By definition, true has the value 1 when converted to an integer

and false has the value 0. Conversely, integers can be implicitly

converted to bool values: nonzero integers convert to true and 0

converts to false. For example:
bool b = 7; // bool(7) is true, so b

becomes true

int i = true; // int(true) is 1, so i becomes 1

In arithmetic and logical expressions, bools are converted to

ints; integer arithmetic and logical operations are performed on the

converted values. If the result is converted back to bool, a 0 is

converted to false and a nonzero value is converted to true.
void g()

{

bool a = true;

bool b = true;

bool x = a + b; // a+b is 2, so x

becomes true

bool y = a – b; // a-b is 0, so y

becomes false

}

4.3.2 Character Types:

A variable of type char can hold a character of the

implementation’s character set. For example:
char ch = ‘a’;

Almost universally, a char has 8 bits so that it can hold one of

256 different values. Typically, the character set is a variant of ISO-

646, for example ASCII, thus providing the characters appearing on

your keyboard. Each character constant has an integer value. For

example, the value of ‘b’ is 98 in the ASCII character set. Here is a

small program that will tell you the integer value of any character you

care to input:
#include <iostream>

int main()

{

 char c;

 std::cin >> c;

 std::cout << “The value of ‘” << c << “’ is” <<

int(c) << ‘\n’;

}

The notation int(c) gives the integer value for a character c. The

possibility of converting a char to an integer raises the question: is a

char signed or unsigned? The 256 values represented by an 8-bit byte

can be interpreted as the values 0 to 255 or as the values -127 to 127.

Unfortunately, which choice is made for a plain char is

implementation-defined. C++ provides two types for which the

answer is definite; signed char, which can hold at least the values -127

to 127, and unsigned char, which can hold at least the values 0 to 255.

INTRODUCTION TO C++ UNIT II

INSTITUTE OF DISTANCE & OPEN LEARNING 20

Fortunately, the difference matters only for values outside the 0 to 127

range, and the most common characters are within that range.

A type wchar_t is provided to hold characters of a larger

character set such as Unicode. It is a distinct type. The size of

wchar_t is implementation-defined and large enough to hold the

largest character set supported by the implementation’s locale. The

strange name is a leftover from C. In C, wchar_t is a typedef rather

than a built-in type. The suffix ‘_t’ was added to distinguish standard

typedefs.

Note that the character types are integral types so that arithmetic and

logical operations apply.

4.3.3 Integer Types:
Like char, each integer type comes in three forms: “plain” int,

signed int, and unsigned int. In addition, integers come in three sizes:

short int, “plain” int, and long int. A long int can be referred to as

plain long. Similarly, short is a synonym for short int, unsigned for

unsigned int, and signed for signed int. The unsigned integer types are

ideal for uses that treat storage as a bit array. Using an unsigned

instead of an int to gain one more bit to represent positive integers is

almost never a good idea. Attempts to ensure that some values are

positive by declaring variables unsigned will typically be defeated by

the implicit conversion rules. Unlike plain chars, plain ints are always

signed. The signed int types are simply more explicit synonyms for

their plain int counterparts.

4.3.4 Floating-Point Types:
The floating-point types represent floating-point numbers. Like

integers, floating-point types come in three sizes: float (single-

precision), double (double-precision), and long double (extended-

precision).

The exact meaning of single-, double-, and extended-precision

is implementation-defined. Choosing the right precision for a problem

where the choice matters requires significant understanding of floating-

point computation. If you don’t have that understanding, get advice,

take the time to learn, or use double and hope for the best.

4.3.5 Sizes:
Some of the aspects of C++’s fundamental types, such as the

size of an int, are implementation - defined. I point out these

dependencies and often recommend avoiding them or taking steps to

minimize their impact. Why should you bother? People who program

on a variety of systems or use a variety of compilers care a lot because

if they don’t, they are forced to waste time finding and fixing obscure

bugs. If your program is a success, it is likely to be ported, so someone

will have to find and fix problems related to implementation-dependent

features. In addition, programs often need to be compiled with other

compilers for the same system, and even a future release of your

favourite compiler may do some things differently from the current

one. It is far easier to know and limit the impact of implementation

dependencies when a program is written than to try to untangle the

mess afterwards.

It is relatively easy to limit the impact of implementation-

dependent language features. Limiting the impact of system-

INTRODUCTION TO C++ UNIT II

INSTITUTE OF DISTANCE & OPEN LEARNING 21

dependent library facilities is far harder. Using standard library

facilities wherever feasible is one approach.

Sizes of C++ objects are expressed in terms of multiples of the

size of a char, so by definition the size of a char is 1. The size of an

object or type can be obtained using the sizeof operator. Following is a

complete C++ program showing the number of bytes that the

fundamental types occupy in the memory.
#include <iostream>

using namespace std;

int main()

{

 cout << “size of char =” <<

sizeof(char) << endl;

 cout << “size of short =” <<

sizeof(short) << endl;

 cout << “size of int =” <<

sizeof(int) << endl;

 cout << “size of long =” <<

sizeof(long) << endl;

 cout << “size of float =” <<

sizeof(float) << endl;

 cout << “size of double =” <<

sizeof(char) << endl;

}

The char type is supposed to be chosen by the implementation

to be the most suitable type for holding and manipulating characters on

a given computer; it is typically an 8-bit byte. Similarly, the int type is

supposed to be chosen to be the most suitable for holding and

manipulating integers on a given computer; it is typically a 4-byte (32-

bit) word. It is unwise to assume more. For example, there are

machines with 32 bit chars.

Next you have a summary of the basic fundamental data types

in C++, as well as the range of values that can be represented with each

one:
Name Size Range

Char 1 byte signed: -128 to 127

unsigned: 0 to 255

short int

(short)

2 bytes signed: -32768 to 32767

unsigned: 0 to 65535

Int 4 bytes signed: -2147483648 to 2147483647

unsigned: 0 to 4294967295

long int

(long)

4 bytes signed: -2147483648 to 2147483647

unsigned: 0 to 4294967295

Bool 1 byte true or false

Float 4 bytes +/- 3.4e +/- 38 (~7 digits)

Double 8 bytes +/- 1.7e +/- 308 (~15 digits)

long double 8 bytes +/- 1.7e +/- 308 (~15 digits

wchar_t 2 or 4

bytes

1 wide character

4.3.6 Void:
The type void is syntactically a fundamental type. It can,

however, be used only as part of a more complicated type; there are no

objects of type void. It is used either to specify that a function does not

return a value or as the base type for pointers to objects of unknown

type. For example:
void x; // error: there are no void objects

INTRODUCTION TO C++ UNIT II

INSTITUTE OF DISTANCE & OPEN LEARNING 22

void f() ; // function f does not return a value

void *pv; // pointer to object of unknown type

When declaring a function, you must specify the type of the

value returned. Logically, you would expect to be able to indicate that

a function didn’t return a value by omitting the return type. However,

that would make the grammar less regular and clash with C usage.

Consequently, void is used as a ‘‘pseudo return type’’ to indicate that a

function doesn’t return a value.

4.3.7 Enumerations:
An enumeration is a type that can hold a set of values specified

by the user. Once defined, an enumeration is used very much like an

integer type. Named integer constants can be defined as members of an

enumeration. For example,
enum { ASM, AUTO, BREAK };

defines three integer constants, called enumerators, and assigns values

to them. By default, enumerator values are assigned increasing from 0,

so ASM = 0, AUTO = 1, and BREAK = 2. An enumeration can be

named. For example:
enum keyword { ASM, AUTO, BREAK };

Each enumeration is a distinct type. The type of an enumerator is its

enumeration. For example,

AUTO is of type keyword.

Declaring a variable keyword instead of plain int can give both

the user and the compiler a hint as to the intended use. For example:
void f(keyword key)

{

switch (key)

{

case ASM:

// do something

break;

case BREAK:

// do something

break;

}

}

A compiler can issue a warning because only two out of three

keyword values are handled. By default, enumerations are converted to

integers for arithmetic operations. An enumeration is a user-defined

type, so users can define their own operations, such as ++ and << for

an enumeration.

4.3.8 Pointers:
For a type T, T* is the type “pointer to T”. That is, a variable of

type T* can hold the address of an object of type T. For example:
char c = ‘a’;

char *p = &c; // p holds the address of c

or graphically:

Unfortunately, pointers to arrays and pointers to functions need a more

complicated notation:
int *pi; // pointer to int

char **ppc; // pointer to pointer to char

int *ap[15]; // array of 15 pointers to ints

INTRODUCTION TO C++ UNIT II

INSTITUTE OF DISTANCE & OPEN LEARNING 23

int (*fp)(char*); // pointer to function taking a

char* argument;

returns an int

int *f(char*); // function taking a char*

argument; returns a

 pointer to int

The fundamental operation on a pointer is dereferencing, that

is, referring to the object pointed to by the pointer. This operation is

also called indirection. The dereferencing operator is (prefix) unary *.

For example:
char c = ‘a’;

char *p = &c; // p holds the address of c

char c2 = *p; // c2 == ‘a’

The variable pointed to by p is c, and the value stored in c is

‘a’, so the value of *p assigned to c2 is ‘a’.

It is possible to perform some arithmetic operations on pointers

to array elements. Pointers to functions can be extremely useful. The

implementation of pointers is intended to map directly to the

addressing mechanisms of the machine on which the program runs.

4.3.9 Arrays:
For a type T, T[size] is the type “array of size elements of type

T”. The elements are indexed

from 0 to size - 1. For example:
float v[3]; // an array of three floats:

v[0], v[1], v[2]

char *a[32]; // an array of 32 pointers

to char: a[0] .. a[31]
The number of elements of the array, the array bound, must be a

constant expression. If you need variable bounds, use a vector. For

example:
void f(int i)

{

int v1[i]; // error: array size not a

constant expression

vector <int> v2 (i); // ok

}

Multidimensional arrays are represented as arrays of arrays. For

example:
int d2[10][20]; // d2 is an array of 10

arrays of 20 integers

4.3.10 References:
A reference is an alternative name for an object. The main use

of references is for specifying arguments and return values for

functions in general and for overloaded operators in particular. The

notation X& means reference to X. To ensure that a reference is a

name for something (that is, bound to an object), we must initialize the

reference. For example:
int i = 1;

int &r1 = i; // ok: r1 initialized

int &r2; // error: initializer missing

extern int &r3; // ok: r3 initialized

elsewhere

References to variables and references to constants are

distinguished because the introduction of a temporary in the case of the

variable is highly error-prone; an assignment to the variable would

become an assignment to the – soon to disappear – temporary. No

such problem exists for references to constants, and references to

INTRODUCTION TO C++ UNIT II

INSTITUTE OF DISTANCE & OPEN LEARNING 24

constants are often important as function arguments. A reference can

be used to specify a function argument so that the function can change

the value of an object passed to it.

4.3.11 Structures:
An array is an aggregate of elements of the same type. A struct

is an aggregate of elements of (nearly) arbitrary types. For example:
struct address

{

char *name;

long int number;

char * street;

char * town;

char state[2];

long zip;

 };

This defines a new type called address consisting of the items

you need in order to send mail to someone. Note the semicolon at the

end. This is one of very few places in C++ where it is necessary to

have a semicolon after a curly brace, so people are prone to forget it.

Variables of type address can be declared exactly as other variables,

and the individual members can be accessed using the . (dot) operator.

For example:
void f()

{

address jd;

jd.name = “Pratap”;

jd.number = 11;

}

Structure objects are often accessed through pointers using the

-> (structure pointer dereference) operator. For example:
void print_addr(address * p)

{

cout << p->name << ‘\n’

<< p->number << ‘ ’ << p->street <<

‘\n’

<< p->town << ‘\n’

<< p->state[0] << p->state[1] << ‘’ <<

p->zip << ‘\n’;

}

When p is a pointer, p -> m is equivalent to (*p).m.

Objects of structure types can be assigned, passed as function

arguments, and returned as the result from a function. For example:
address current;

address set_current (address next)

{

address prev = current;

current = next;

return prev;

}

Other plausible operations, such as comparison (== and !=), are not

defined. However, the user can define such operators.

A struct is a simple form of a class.

4.4 OPERATORS
This section introduces the built-in C++ operators for

composing expressions. C++ provides operators for composing

arithmetic, relational, logical, bitwise, and conditional expressions. It

also provides operators which produce useful side-effects, such as

INTRODUCTION TO C++ UNIT II

INSTITUTE OF DISTANCE & OPEN LEARNING 25

assignment, increment, and decrement. We will look at each category

of operators in turn and also discuss the precedence rules which govern

the order of operator evaluation in a multi - operator expression.

4.4.1 Arithmetic Operators:
C++ provides five basic arithmetic operators. These are

summarized in the table below.

Operator Name

+ Addition

- Subtraction

* Multiplication

/ Division

% Modulo (Remainder)

Except for modulo (%) all other arithmetic operators can accept

a mix of integer and real operands. Generally, if both operands are

integers then the result will be an integer. However, if one or both of

the operands are reals then the result will be a real (or double to be

exact).

Operations of addition, subtraction, multiplication and division

literally correspond with their respective mathematical operators. The

only one that you might not be so used to see is modulo; whose

operator is the percentage sign (%). Modulo is the operation that gives

the remainder of a division of two values. The remainder operator (%)

expects integers for both of its operands. It returns the remainder of

integer-dividing the operands. For example 13%3 is calculated by

integer dividing 13 by 3 to give an outcome of 4 and a remainder of 1;

the result is therefore 1.

4.4.2 Relational Operators:
C++ provides six relational operators for comparing numeric

quantities. These are summarized in the table below. Relational

operators evaluate to 1 (representing the true outcome) or 0

(representing the false outcome).
Operator Name Example

== Equality 5 == 5 //gives 1

!= Inequality 5 != 5 //gives

0

< Less Than 5 < 5.5 //gives

1

<= Less Than or

Equal

5 <= 5 //gives

1

> Greater Than 5 > 5.5 //gives

0

>= Greater Than

or Equal

5 >= 6 //gives

0

Note that the <= and >= operators are only supported in the form

shown. In particular, =< and => are both invalid and do not mean

anything.

The relational operators should not be used for comparing

strings, because this will result in the string addresses being compared,

not the string contents. For example, the expression

"HELLO" < "BYE"

INTRODUCTION TO C++ UNIT II

INSTITUTE OF DISTANCE & OPEN LEARNING 26

causes the address of "HELLO" to be compared to the address of

"BYE". As these addresses are determined by the compiler (in a

machine-dependent manner), the outcome may be 0 or may be 1, and is

therefore undefined. C++ provides library functions (e.g., strcmp) for

the lexicographic comparison of string. These will be described later in

the book.

4.4.3 Logical Operators:
C++ provides three logical operators for combining logical

expression. These are summarized in the table below. Like the

relational operators, logical operators evaluate to 1 or 0.

Operator Name

! Logical Negation

&& Logical And

|| Logical Or

Logical negation is a unary operator, which negates the logical

value of its single operand. If its operand is nonzero it produces 0, and

if it is 0 it produces 1. Logical and produces 0 if one or both of its

operands evaluate to 0. Otherwise, it produces 1. Logical or produces 0

if both of its operands evaluate to 0. Otherwise, it produces 1.

The following panels show the result of Logical And and Or operators

evaluating two expressions ‘a’ and ‘b’:

4.4.4 Bitwise Operators:
C++ provides six bitwise operators for manipulating the

individual bits in an integer quantity. These are summarized in the

table below.

Operator Name

~ Bitwise Negation

& Bitwise And

| Bitwise Or

^ Bitwise Exclusive Or

<< Bitwise Left Shift

>> Bitwise Right Shift

Bitwise operators expect their operands to be integer quantities

and treat them as bit sequences. Bitwise negation is a unary operator

which reverses the bits in its operands. Bitwise and compares the

corresponding bits of its operands and produces a 1 when both bits are

1, and 0 otherwise. Bitwise or compares the corresponding bits of its

operands and produces a 0 when both bits are 0, and 1otherwise.

Bitwise exclusive or compares the corresponding bits of its operands

and produces a 0 when both bits are 1 or both bits are 0, and 1

otherwise.

a b a && b

True True True

True False False

False True False

False False False

a b a || b

True True True

True False True

False True True

False False False

INTRODUCTION TO C++ UNIT II

INSTITUTE OF DISTANCE & OPEN LEARNING 27

Bitwise left shift operator and bitwise right shift operator both

take a bit sequence as their left operand and a positive integer quantity

‘n’ as their right operand. The former produces a bit sequence equal to

the left operand but which has been shifted ‘n’ bit positions to the left.

The latter produces a bit sequence equal to the left operand but which

has been shifted ‘n’ bit positions to the right. Vacated bits at either end

are set to 0.

4.4.5 Increment/Decrement Operators:

The auto increment (++) and auto decrement (--) operators

provide a convenient way of, respectively, adding and subtracting 1

from a numeric variable. These are summarized in the table below. The

examples assume the following variable definition:
int k = 5;

Operator Name Example

++ Auto Increment

(prefix)

++k + 10

//gives 16

++ Auto Increment

(postfix)

k++ + 10

//gives 15

-- Auto Decrement

(prefix)

--k + 10

//gives 14

-- Auto Decrement

(postfix)

k-- + 10

//gives 15

Both operators can be used in prefix and postfix form. The

difference is significant. When used in prefix form, the operator is first

applied and the outcome is then used in the expression. When used in

the postfix form, the expression is evaluated first and then the operator

applied.

4.4.6 Assignment Operator:
The assignment operator is used for storing a value at some

memory location (typically denoted by a variable). Its left operand

should be an lvalue, and its right operand may be an arbitrary

expression. The latter is evaluated and the outcome is stored in the

location denoted by the lvalue. An lvalue (standing for left value) is

anything that denotes a memory location in which a value may be

stored. The kind of lvalue we have seen so far is a variable, pointers

and references.

The assignment operator has a number of variants, obtained by

combining it with the arithmetic and bitwise operators. These are

summarized in the table below. The examples assume that n is an

integer variable.
Operator Example Equivalent to

= n = 25

+= n += 25 n = n+25

-= n -= 25 n = n – 25

*= n *= 25 n = n * 25

/= n /= 25 n = n / 25

%= n %= 25 n = n % 25

&= n &= 0xF2F2 n = n & 0xF2F2

|= n |= 0xF2F2 n = n | 0xF2F2

^= n ^= 0xF2F2 n = n ^ 0xF2F2

<<= n <<= 0xF2F2 n = n << 0xF2F2

INTRODUCTION TO C++ UNIT II

INSTITUTE OF DISTANCE & OPEN LEARNING 28

>>= n >>= 0xF2F2 n = n >> 0xF2F2

4.4.7 Conditional Operator:
The conditional operator takes three operands. It has the

general form:
operand1 ? operand2 : operand3

First operand1 is evaluated, which is treated as a logical

condition. If the result is nonzero then operand2 is evaluated and its

value is the final result. Otherwise, operand3 is evaluated and its value

is the final result. For example:
int m = 1, n = 2;

int min = (m < n ? m : n); // min receives 1

Note that of the second and the third operands of the conditional

operator only one is evaluated.

4.4.8 Comma Operator:
Multiple expressions can be combined into one expression

using the comma operator. The comma operator takes two operands. It

first evaluates the left operand and then the right operand, and returns

the value of the latter as the final outcome. For example:
int m, n, min;

int mCount = 0, nCount = 0;

//...

min = (m < n ? mCount++, m : nCount++, n);

Here when m is less than n, mCount++ is evaluated and the value of m

is stored in min. Otherwise, nCount++ is evaluated and the value of n

is stored in min.

4.4.9 Scope Resolution Operator:

C++, like C, is a block – structured language. Blocks and

scopes can be used in constructing programs. We know that the same

variable can be used to have different meanings in different blocks. In

C, the global version of a variable cannot be accessed from within the

inner block. C++ resolves this problem by introducing a new operator

:: called the scope resolution operator. This can be used to uncover a

hidden variable. It takes the following form:
 :: variable-name

This operator allows access to the global version of a variable. For

example,
int main()

{

 int m = 20; //m declared, local to main

 {

 int m = 10; //m declared again, local

to inner block

 cout << “m = ” << m << “\n”;

 cout << “:: m = ” << ::m << “\n”;

 }

}

The output of the above program will be
m = 10

m = 20
A major application of the scope resolution operator is in the

classes to identify the class to which a member function belongs. This

will be dealt in detail later when classes are introduced.

INTRODUCTION TO C++ UNIT II

INSTITUTE OF DISTANCE & OPEN LEARNING 29

4.4.10 Member Dereferencing Operators:
C++ permits us to define a class containing various types of

data and functions as members. C++ also permits us to access the class

members through pointers. In order to achieve this, C++ provides a set

of three pointer – to – member operators. The following table shows

these operators and their functions.
Operator Function

::* To declare a pointer to a member of a class

* To access a member using object name and a

pointer to that member

->* To access a member using a pointer to the

object and a pointer to that member

Further details on these operators will be meaningful only after we

discuss classes, and therefore we defer the use of member

dereferencing operators until then.

4.4.11 Memory Management Operators:
C uses malloc() and calloc() functions to allocate memory

dynamically at run time. Similarly, it uses the function free() to free

dynamically allocated memory. Although C++ supports these

functions, it also defines two unary operators new and delete that

perform the task of allocating and freeing the memory in a better and

easier way.

An object can be created by using new, and destroyed by using

delete, as and when required. A data object created inside a block with

new, will remain in existence until it is explicitly destroyed by using

delete. Thus, lifetime of an object is directly under our control and is

unrelated to the block structure of the program.

The new operator can be used to create objects of any type. It

takes the following general form:
 pointer – variable = new data – type;

Examples:
 p = new int;

 q = new float;

where p is a pointer of type int and q is a pointer of type float.

When a data object is no longer needed, it is destroyed to release the

memory space for reuse. The general form of its use is:
 delete pointer – variable;

For example:
 delete p;

4.4.12 Type Cast Operator:

C++ permits explicit type conversion of variables or

expressions using the type cast operator. The following two versions

are equivalent:
(type – name) expression // C notation

type – name (expression) // C++ notation

Examples:
 average = sum / (float) i; //C notation

 average = sum / float (i); //C++ notation

ANSI C++ adds the following new cast operators:

� const_cast

� static_cast

� dynamic_cast

INTRODUCTION TO C++ UNIT II

INSTITUTE OF DISTANCE & OPEN LEARNING 30

� reinterpret_cast

Application of these operators is discussed later.

4.5 OPERATOR PRECEDENCE
When writing complex expressions with several operands, we

may have some doubts about which operand is evaluated first and

which later. There is an established order with the priority of each

operator, and not only the arithmetic ones (those whose preference

come from mathematics) but for all the operators which can appear in

C++. From greatest to lowest priority, the priority order is as follows:
Level Operator Description Grouping

1 :: scope Left-to-

right

2 () [] . -> ++ --

dynamic_cast

static_cast

reinterpret_cast

const_cast typeid

postfix Left-to-

right

3 ++ -- ~ ! sizeof new

delete

unary (prefix) Right-to-

left

* & indirection

and reference

(pointers)

+ - unary sign

operator

4 (type) type casting Right-to-

left

5 .* ->* pointer-to-

member

Left-to-

right

6 * / % multiplicative Left-to-

right

7 + - additive Left-to-

right

8 << >> shift Left-to-

right

9 < > <= >= relational Left-to-

right

10 == != equality Left-to-

right

11 & bitwise AND Left-to-

right

12 ^ bitwise XOR Left-to-

right

13 | bitwise OR Left-to-

right

14 && logical AND Left-to-

right

15 || logical OR Left-to-

right

16 ? : conditional Right-to-

left

17 = *= /= %= += .= >>=

<<= &= ^= |=

assignment Right-to-

left

18 , comma Left-to-

right

INTRODUCTION TO C++ UNIT II

INSTITUTE OF DISTANCE & OPEN LEARNING 31

Grouping defines the precedence order in which operators are

evaluated in the case that there are several operators of the same level

in an expression. All these precedence levels for operators can be

manipulated or become more legible by removing possible ambiguities

using parentheses signs (()).

4.6 Expressions

An expression is any computation which yields a value. When

discussing expressions, we often use the term evaluation. For example,

we say that an expression evaluates to a certain value. Usually the final

value is the only reason for evaluating the expression. However, in

some cases, the expression may also produce side-effects. These are

permanent changes in the program state. In this sense, C++ expressions

are different from mathematical expressions. Expressions may be of

the following seven types:

� Constant expressions

� Integral expressions

� Float expressions

� Pointer expressions

� Relational expressions

� Logical expressions

� Bitwise expressions

An expression may also use combinations of the above

expressions. Such expressions are known as compound expressions

4.6.1 Constant Expressions:
Constant expressions consist of only constant values. Examples:

15

20 + 5 / 2.0

4.6.2 Integral Expressions:
Integral expressions are those which produce integer results

after implementing all the automatic and explicit type conversions.

Examples:
m + n

m * n – 5

5 + int(2.3)
where m and n are integer variables.

4.6.3 Float Expressions:

Float expressions are those which, after all conversions,

produce floating – point results. Examples:
x * y / 10

5 + float(10)

where x and y are floating – point variables.

4.6.4 Pointer Expressions:
Pointer expressions produce address values. Examples:

&m

ptr + 1

where m is a variable and ptr is a pointer.

INTRODUCTION TO C++ UNIT II

INSTITUTE OF DISTANCE & OPEN LEARNING 32

4.6.5 Relational Expressions:
Relational expressions yield results of type bool which takes a

value true or false. Examples:
x <= y

a+b == c+d

When arithmetic expressions are used on either side of a relational

operator, they will be evaluated first and then the results compared.

Relational expressions are also known as Boolean expressions.

4.6.6 Logical Expressions:
Logical expressions combine two or more relational

expressions and produce bool type results. Examples:
a>b && x==10

x==10 || y==5

4.6.7 Bitwise Expressions:
Bitwise expressions are used to manipulate data at a bit level.

They are basically used for testing or shifting bits. Examples:
x << 3 // Shift three bit position to

left

y >> 1 // Shift one bit position to

right

Shift operators are often used for multiplication and division by powers

of two.

4.7 SUMMARY

� Standard C++ provides two different data types – built-in types

and user-defined types.

� The type int is used for whole numbers which are represented

exactly within the computer.

� The type float is used for real (decimal) numbers. They are

held to a limited accuracy within the computer.

� The type char is used to represent single characters. A char

constant is enclosed in single quotation marks.

� Literal strings can be used in output statements and are

represented by enclosing the characters of the string in double

quotation marks ".

� C++ provides an additional use of void, for declaration of

generic pointers.

� The enumerated data types differ slightly in C++. The tag

names of the enumerated data types become new type names.

That is, we can declare new variables using these tag names.

� Pointers are widely used in C++ for memory management and

to achieve polymorphism.

� C++ is very strict regarding type checking of variables. It does

not allow to equate variables of two different data types. The

only way to break this rule is type casting.

� A major application of the scope resolution (::) operator is in

the classes to identify the class to which a member function

belongs.

INTRODUCTION TO C++ UNIT II

INSTITUTE OF DISTANCE & OPEN LEARNING 33

� C++ provides two new unary operators, in addition to malloc(),

calloc() and free() functions, new and delete to perform the

task of allocating and freeing the memory in a better and easier

way.

� The order of evaluation of an expression is determined by the

precedence of the operators.

� C++ supports seven types of expressions. When data types are

mixed in an expression, C++ performs the conversion

automatically using certain rules.

� When float expressions are assigned to int variables there

may be loss of accuracy.

� C++ also permits explicit type conversion of variables and

expressions using the type cast operators.

4.8 Unit End Exercises

4.8.1 Questions
These questions are intended as a self-test for readers.

1) An unsigned int can be twice as large as the signed int. Explain

how?

2) What are the applications of void data type in C++?

3) Describe the implementation of enum data type in C++?

4) In C++, a variable can be declared anywhere in the scope. What

is the significance of this feature?

5) What is an operator?

6) What is the application of the scope resolution operator in

C++?

7) What data types would you use to represent the following

items?

a. the number of students in a class

b. the grade (a letter) attained by a student in the class

c. the average mark in a class

d. the distance between two points

e. the population of a city

f. the weight of a postage stamp

g. the registration letter of a car

INTRODUCTION TO C++ UNIT II

INSTITUTE OF DISTANCE & OPEN LEARNING 34

4.8.2 Programming Projects:
Writing programs that solve the Programming Projects helps to

solidify your understanding of the material and demonstrates how the

chapter’s concepts are applied.

1) What is wrong with the following code fragment?

a. enum Season { SPRING, SUMMER, FALL, WINTER };

b. enum Semester { FALL, SPRING, SUMMER };

2) Write declaration statements to declare integer variables i and

j and float variables x and y. Extend your declaration

statements so that i and j are both initialised to 1 and y is

initialised to 10.0.

3) Find errors, if any, in the following C++ statements.

a. long float x;

b. char *cp = vp; //vp is a void pointer

c. int code = three; //three is an enumerator

d. int *p = new; //allocate memory with

new

e. enum {green, yellow, red};

f. int const *p = total;

g. const int array_size;

h. int &number = 100;

i. float *p = new int[10];

j. char name[3] = “USA”;

4) To what do the following expressions evaluate?

a. 17/3

b. 17%3

c. 1/2

d. 1/2*(x+y)

5) Given the declarations:
float x;

int k, i = 5, j = 2;

To what would the variables x and k be set as a result of the

assignments

a. k = i/j;

b. x = i/j;

c. k = i%j;

INTRODUCTION TO C++ UNIT II

INSTITUTE OF DISTANCE & OPEN LEARNING 35

d. x = 5.0/j;

4.9 FURTHER READING

Bjarne Stroustrup, “The C++ Programming Language: Second

Edition”.

Herbert Schildt, “The C++ Complete Reference”

E Balagurusamy, “Object Oriented Programming C++”, Third Edition.

John Hubbard “Fundamentals of Computing with C++”

����������������

INTRODUCTION TO C++ UNIT II

INSTITUTE OF DISTANCE & OPEN LEARNING 36

5
Input and Output

Unit Structure

5.1 Objectives

5.2 Introduction

5.3 Standard Output (cout)

5.4 Standard Input (cin)

5.4.1 cin and Strings

5.5 Escape Characters

5.6 Preprocessor Directives

5.6.1 Macro definitions

5.6.2 Conditional inclusions

5.6.3 Source file inclusion

5.6.4 Pragma directive

5.6.5 Error directive

5.7 Namespaces

5.7.1 Using Declaration

5.7.2 Using Directive

5.7.3 Namespace std

5.8 Comments and Indentation

5.9 Summary

5.10 Unit – End Exercises

5.10.1 Questions

5.10.2 Programming Projects

5.11 Further Reading

5.1 OBJECTIVES

After completing this chapter you will be able to:

� Understand the Standard Input and Output stream

� Identify and use escape characters

� Understand Preprocessor directives

� Understand and use namespaces.

INTRODUCTION TO C++ UNIT II

INSTITUTE OF DISTANCE & OPEN LEARNING 37

5.2 INTRODUCTION
Until now, the example programs of previous sections provided

very little interaction with the user, if any at all. Using the standard

input and output library, we will be able to interact with the user by

printing messages on the screen and getting the user's input from the

keyboard.

C++ uses a convenient abstraction called streams to perform

input and output operations in sequential media such as the screen or

the keyboard. A stream is an object where a program can either insert

or extract characters to/from it. We do not really need to care about

many specifications about the physical media associated with the

stream - we only need to know it will accept or provide characters

sequentially.

The most common way in which a program communicates with

the outside world is through simple, character-oriented input/output

(IO) operations. C++ provides two useful operators for this purpose:

>> for input and << for output. The standard C++ library includes the

header file iostream, where the standard input and output stream

objects are declared.

5.3 STANDARD OUTPUT (COUT)

By default, the standard output of a program is the screen, and

the C++ stream object defined to access it is cout. cout is used in

conjunction with the insertion operator, which is written as << (two

"less than" signs).
cout << "Output sentence"; // prints Output

sentence on screen

cout << 120; // prints number 120

on screen

cout << x; // prints the content

of x on screen

The << operator inserts the data that follows it into the stream

preceding it. In the examples above it inserted the constant string

Output sentence, the numerical constant 120 and variable x into the

standard output stream cout. Notice that the sentence in the first

instruction is enclosed between double quotes (") because it is a

constant string of characters. Whenever we want to use constant strings

of characters we must enclose them between double quotes (") so that

they can be clearly distinguished from variable names. For example,

these two sentences have very different results:
cout << "Hello"; // prints Hello

cout << Hello; // prints the content of

Hello variable

The insertion operator (<<) may be used more than once in a

single statement. The utility of repeating the insertion operator (<<) is

demonstrated when we want to print out a combination of variables

and constants or more than one variable:

cout << "Hello, I am " << age << " years old and my

postal code is " << pincode;

INTRODUCTION TO C++ UNIT II

INSTITUTE OF DISTANCE & OPEN LEARNING 38

If we assume the age variable to contain the value 24 and the

pincode variable to contain 400054 the output of the previous

statement would be:

Hello, I am 24 years old and my postal code is

400054

It is important to notice that cout does not add a line break after

its output unless we explicitly indicate it, therefore, the following

statements:

cout << "This is a sentence.";

cout << "This is another sentence.";

will be shown on the screen one following the other without any line

break between them:

This is a sentence.This is another sentence.

even though we had written them in two different insertions into cout.

In order to perform a line break on the output we must explicitly insert

a new-line character into cout. In C++ a new-line character can be

specified as \n (backslash, n):

cout << "First sentence.\n ";

cout << "Second sentence.\nThird sentence.";

This produces the following output:
First sentence.

Second sentence.

Third sentence.

Additionally, to add a new-line, you may also use the endl

manipulator. For example:
cout << "First sentence." << endl;

cout << "Second sentence." << endl;

would print out:
First sentence.

Second sentence.

The endl manipulator produces a newline character, exactly as

the insertion of ‘\n’ does, but it also has an additional behaviour when

it is used with buffered streams: the buffer is flushed. Anyway, cout

will be an unbuffered stream in most cases, so you can generally use

both the \n escape character and the endl manipulator in order to

specify a new line without any difference in its behaviour.

5.4 STANDARD INPUT (CIN)

The standard input device is usually the keyboard. Handling the

standard input in C++ is done by applying the overloaded operator of

extraction (>>) on the cin stream. The operator must be followed by

the variable that will store the data that is going to be extracted from

the stream. For example:
int age;

cin >> age;
The first statement declares a variable of type int called age,

and the second one waits for an input from cin (the keyboard) in order

to store it in this integer variable.

INTRODUCTION TO C++ UNIT II

INSTITUTE OF DISTANCE & OPEN LEARNING 39

cin can only process the input from the keyboard once the

RETURN key has been pressed. Therefore, even if you request a

single character, the extraction from cin will not process the input until

the user presses RETURN after the character has been introduced.

You must always consider the type of the variable that you are

using as a container with cin extractions. If you request an integer you

will get an integer, if you request a character you will get a character

and if you request a string of characters you will get a string of

characters.
// i/o example

#include <iostream>

using namespace std;

 int main ()

{

int i;

cout << "Please enter an integer value: ";

cin >> i;

cout << "The value you entered is " << i;

cout << " and its double is " << i*2 <<

".\n";

return 0;

}

Output:

Please enter an integer value: 702

The value you entered is 702 and its double is

1404.

The user of a program may be one of the factors that generate

errors even in the simplest programs that use cin (like the one we have

just seen). Since if you request an integer value and the user introduces

a name (which generally is a string of characters), the result may cause

your program to misoperate since it is not what we were expecting

from the user. So when you use the data input provided by cin

extractions you will have to trust that the user of your program will be

cooperative and that he/she will not introduce his/her name or

something similar when an integer value is requested. You can also use

cin to request more than one datum input from the user:
cin >> a >> b;

is equivalent to:
cin >> a;

cin >> b;

In both cases the user must give two data, one for variable a and

another one for variable b that may be separated by any valid blank

separator: a space, a tab character or a newline.

5.4.1 cin and Strings:
We can use cin to get strings with the extraction operator (>>)

as we do with fundamental data type variables:
cin >> mystring;

However, as it has been said, cin extraction stops reading as

soon as if finds any blank space character, so in this case we will be

able to get just one word for each extraction. This behaviour may or

may not be what we want; for example if we want to get a sentence

from the user, this extraction operation would not be useful. In order to

get entire lines, we can use the function getline, which is the more

recommendable way to get user input with cin.
// cin with strings

INTRODUCTION TO C++ UNIT II

INSTITUTE OF DISTANCE & OPEN LEARNING 40

#include <iostream>

#include <string>

using namespace std;

 int main ()

{

string mystr;

cout << "What's your name? ";

getline (cin, mystr);

cout << "Hello " << mystr << ".\n";

return 0;

}

Output:

What's your name? Prakash Pratap Singh

Hello Prakash Pratap Singh.
Notice how we used the getline function with cin to get a complete

line using the string identifier (mystr).

5.5 ESCAPE CHARACTERS

Escape characters are special characters that are difficult or

impossible to express otherwise in the source code of a program, like

newline (\n) or tab (\t). All of them are preceded by a backslash (\).

Here you have a list of some of such escape codes:

Name C++ Name

Newline \n

Horizontal tab \t

Vertical tab \v

Backspace \b

Carriage return \r

Form feed \f

Alert \a

Backslash \\

Question mark \?

Single quote \’

Double quote \”

Octal number \ooo

Hexadecimal number \xhhh

Despite their appearances, these are single characters.

For example:
'\n'

'\t'

"Left \t Right"

"one\ntwo\nthree"
Additionally, you can express any character by its numerical

ASCII code by writing a backslash (\) followed by the ASCII code

expressed as an octal (base-8) or hexadecimal (base-16) number. In the

first case (octal) the digits must immediately follow the backslash (for

example \23 or \40), in the second case (hexadecimal), an x character

must be written before the digits themselves (for example \x20 or

\x4A).

Decimal Octal Hexadecimal

6 ‘\6’ ‘\x6’

INTRODUCTION TO C++ UNIT II

INSTITUTE OF DISTANCE & OPEN LEARNING 41

48 ‘\60’ ‘\x30’

95 ‘\137’ ‘\x05F’

5.6 PREPROCESS OR DIRECTIVES

Prior to compiling a program source file, the C++ compiler

passes the file through a preprocessor. The role of the preprocessor is

to transform the source file into an equivalent file by performing the

preprocessing instructions contained by it. These instructions facilitate

a number of features, such as: file inclusion, conditional compilation,

and macro substitution. The figure below illustrates the effect of the

preprocessor on a simple file.

The preprocessor performs very minimal error checking of the

preprocessing instructions. Because it operates at a text level, it is

unable to check for any sort of language-level syntax errors. This

function is performed by the compiler.

The preprocessor is executed before the actual compilation of

code begins; therefore the preprocessor digests all these directives

before any code is generated by the statements. These preprocessor

directives extend only across a single line of code. As soon as a

newline character is found, the preprocessor directive is considered to

end. No semicolon (;) is expected at the end of a preprocessor

directive.

5.6.1 Macro definitions (#define, #undef):
To define preprocessor macros we can use #define. Its format is:

#define identifier replacement

When the preprocessor encounters this directive, it replaces any

occurrence of identifier in the rest of the code by replacement. This

replacement can be an expression, a statement, a block or simply

anything. The preprocessor does not understand C++; it simply

replaces any occurrence of identifier by replacement.

#define TABLE_SIZE 100

int table1[TABLE_SIZE];

int table2[TABLE_SIZE];

INTRODUCTION TO C++ UNIT II

INSTITUTE OF DISTANCE & OPEN LEARNING 42

After the preprocessor has replaced TABLE_SIZE, the code becomes

equivalent to:

int table1[100];

int table2[100];

Consider the example given below:
// function macro

#include <iostream>

using namespace std;

 #define getmax(a,b) ((a)>(b)?(a):(b))

 int main()

{

 int x=5, y;

 y= getmax(x,2);

 cout << y << endl;

 cout << getmax(7,x) << endl;

 return 0;

}

Output:

5

7

#define can work also with parameters to define function

macros. Any occurrence of getmax followed by two arguments is

replaced by the replacement expression, also replacing each argument

by its identifier, exactly as you would expect if it was a function.

Defined macros are not affected by block structure. A macro

lasts until it is undefined with the #undef preprocessor directive.
#define TABLE_SIZE 100

int table1[TABLE_SIZE];

#undef TABLE_SIZE

#define TABLE_SIZE 200

int table2[TABLE_SIZE];
This would generate the same code as:

int table1[100];

int table2[200];
Because preprocessor replacements happen before any C++

syntax check, macro definitions can be a tricky feature, but be careful:

code that relies heavily on complicated macros may result obscure to

other programmers, since the syntax they expect is on many occasions

different from the regular expressions programmers expect in C++.

5.6.2 Conditional inclusions (#ifdef, #ifndef, #if, #endif, #else and

#elif):

These directives allow including or discarding part of the code

of a program if a certain condition is met. #ifdef allows a section of a

program to be compiled only if the macro that is specified as the

parameter has been defined, no matter which its value is. For example:
#ifdef TABLE_SIZE

int table[TABLE_SIZE];

#endif
In this case, the line of code int table [TABLE_SIZE]; is only

compiled if TABLE_SIZE was previously defined with #define,

independently of its value. If it was not defined, that line will not be

included in the program compilation.

INTRODUCTION TO C++ UNIT II

INSTITUTE OF DISTANCE & OPEN LEARNING 43

#ifndef serves for the exact opposite: the code between #ifndef and

#endif directives is only compiled if the specified identifier has not

been previously defined. For example:
#ifndef TABLE_SIZE

#define TABLE_SIZE 100

#endif

int table[TABLE_SIZE];
In this case, if when arriving at this piece of code, the

TABLE_SIZE macro has not been defined yet, it would be defined to a

value of 100. If it already existed it would keep its previous value since

the #define directive would not be executed.

The #if, #else and #elif (i.e., "else if") directives serve to

specify some condition to be met in order for the portion of code they

surround to be compiled. The condition that follows #if or #elif can

only evaluate constant expressions, including macro expressions. For

example:

#if TABLE_SIZE>200

#undef TABLE_SIZE

#define TABLE_SIZE 200

 #elif TABLE_SIZE<50

#undef TABLE_SIZE

#define TABLE_SIZE 50

 #else

#undef TABLE_SIZE

#define TABLE_SIZE 100

#endif

 int table[TABLE_SIZE];

Notice how the whole structure of #if, #elif and #else chained

directives ends with #endif.

The table below summarizes the general forms of these

directives (code denotes zero or more lines of program text, and

expression denotes a constant expression).

General Form of Conditional Inclusion Directives:

Form Explanation
#ifdef

identifier

 code

#endif

If identifier is a #defined symbol then code is

included in the compilation process. Otherwise, it

is excluded.

#ifndef

identifier

 code

#endif

If identifier is not a #defined symbol then code is

included in the compilation process. Otherwise, it

is excluded.

#if

expression

 code

#endif

If expression evaluates to nonzero then code is

included in the compilation process. Otherwise, it

is excluded.

#ifdef

identifier

 code1

#else

 code2

#endif

If identifier is a #defined symbol then code1 is

included in the compilation process and code2 is

excluded. Otherwise, code2 is included and code1

is excluded.

Similarly, #else can be used with #ifndef and #if.
#if

expression1
If expression1 evaluates to nonzero then only

INTRODUCTION TO C++ UNIT II

INSTITUTE OF DISTANCE & OPEN LEARNING 44

 code1

#elif

expression2

 code2

#else

 code3

#endif

code1 is included in the compilation process.

Otherwise, if expression2 evaluates to nonzero

then only code2 is included. Otherwise, code3 is

included.

As before, the #else part is optional. Also, any

number of #elif directives may appear after #if

directive.

5.6.3 Source file inclusion (#include):

This directive has been used assiduously in previous sections of this

book. When the preprocessor finds an #include directive it replaces it

by the entire content of the specified file. There are two ways to

specify a file to be included:
#include "file"

#include <file>
The only difference between both expressions is the places

(directories) where the compiler is going to look for the file. In the first

case where the file name is specified between double-quotes, the file

is searched first in the same directory that includes the file containing

the directive. In case that it is not there, the compiler searches the file

in the default directories where it is configured to look for the standard

header files.

If the file name is enclosed between angle-brackets <> the file

is searched directly where the compiler is configured to look for the

standard header files. Therefore, standard header files are usually

included in angle-brackets, while other specific header files are

included using quotes.

5.6.4 Pragma directive (#pragma):

This directive is used to specify diverse options to the compiler.

These options are specific for the platform and the compiler you use.

Consult the manual or the reference of your compiler for more

information on the possible parameters that you can define with

#pragma. If the compiler does not support a specific argument for

#pragma, it is ignored - no error is generated.

5.6.5 Error directive (#error):

This directive aborts the compilation process when it is found,

generating a compilation the error that can be specified as its

parameter:
#ifndef __cplusplus

#error A C++ compiler is required!

#endif
This example aborts the compilation process if the macro name

__cplusplus is not defined (this macro name is defined by default in all

C++ compilers).

INTRODUCTION TO C++ UNIT II

INSTITUTE OF DISTANCE & OPEN LEARNING 45

5.7 NAMESPACES

A namespace is a mechanism for expressing logical grouping.

That is, if some declarations logically belong together according to

some criteria, they can be put in a common namespace to express that

fact. Namespaces allow to group entities like classes, objects and

functions under a name. This way the global scope can be divided in

"sub-scopes", each one with its own name. The format of namespaces

is:
namespace identifier

{

entities

}
Where identifier is any valid identifier and entities is the set of

classes, objects and functions that are included within the namespace.

For example:
namespace myNamespace

{

 int a, b;

}
In this case, the variables a and b are normal variables declared

within a namespace called myNamespace. In order to access these

variables from outside the myNamespace namespace we have to use

the scope operator ::. For example, to access the previous variables

from outside myNamespace we can write:
myNamespace::a

myNamespace::b
The functionality of namespaces is especially useful in the case

that there is a possibility that a global object or function uses the same

identifier as another one, causing redefinition errors. For example:
// namespaces

#include <iostream>

using namespace std;

 namespace first

{

 int var = 5;

}

 namespace second

{

 double var = 3.1416;

}

 int main ()

{

cout << first::var << endl;

cout << second::var << endl;

return 0;

}

Output:

5

3.1416
In this case, there are two global variables with the same name:

var. One is defined within the namespace first and the other one in

second. No redefinition errors happen thanks to namespaces.

INTRODUCTION TO C++ UNIT II

INSTITUTE OF DISTANCE & OPEN LEARNING 46

A namespace is a scope. Thus, ‘‘namespace’’ is a very

fundamental and relatively simple concept. The larger a program is, the

more useful namespaces are to express logical separations of its parts.

Ordinary local scopes, global scopes, and classes are namespaces.

Ideally, every entity in a program belongs to some recognizable

logical unit (‘‘module’’). Therefore, every declaration in a nontrivial

program should ideally be in some namespace named to indicate its

logical role in the program. The exception is main(), which must be

global in order for the run-time environment to recognize it as special.

5.7.1 Using Declaration:

When a name is frequently used outside its namespace, it can

be a bother to repeatedly qualify it with its namespace name. The

redundancy can be eliminated by a using-declaration to state in one

place that the member used in the scope belongs to a namespace. The

format of using-declaration is:
using name :: member;

where name refers to the name of the namespace.

For example:
// using

#include <iostream>

using namespace std;

namespace first

{

int x = 5;

int y = 10;

}

namespace second

{

double x = 3.1416;

double y = 2.7183;

}

int main ()

{

using first::x;

using second::y;

cout << x << endl;

cout << y << endl;

cout << first::y << endl;

cout << second::x << endl;

return 0;

}

Output:

5

2.7183

10

3.1416
Notice how in this code, x (without any name qualifier) refers

to first::x whereas y refers to second::y, exactly as our using

declarations have specified. We still have access to first::y and

second::x using their fully qualified names.

A using-declaration introduces a local synonym. It is often a

good idea to keep local synonyms as local as possible to avoid

confusion.

INTRODUCTION TO C++ UNIT II

INSTITUTE OF DISTANCE & OPEN LEARNING 47

5.7.2 Using Directive:

The keyword using can also be used as a directive to introduce

an entire namespace. A using-directive makes names from a

namespace available almost as if they had been declared outside their

namespace. The format of using-directive is:
using namespace identifier;

For example:
// using

#include <iostream>

using namespace std;

namespace first

{

int x = 5;

int y = 10;

}

namespace second

{

double x = 3.1416;

double y = 2.7183;

}

int main ()

{

using namespace first;

cout << x << endl;

cout << y << endl;

cout << second::x << endl;

cout << second::y << endl;

return 0;

}

Output:

5

10

3.1416

2.7183
In this case, since we have declared that we were using

namespace first, all direct uses of x and y without name qualifiers was

referring to their declarations in namespace first.

Global using-directives are a tool for transition and are

otherwise best avoided. In a namespace, a using-directive is a tool for

namespace composition. In a function (only), a using-directive can be

safely used as a notational convenience.

using (using-declaration) and using namespace (using-

directive) have validity only in the same block in which they are stated

or in the entire code if they are used directly in the global scope.

5.7.3 Namespace std:

All the files in the C++ standard library declare all of its

entities within the std namespace. That is why we have generally

included the using namespace std; statement in all programs that used

any entity defined in iostream.

5.8 COMMENTS AND INDENTATION

INTRODUCTION TO C++ UNIT II

INSTITUTE OF DISTANCE & OPEN LEARNING 48

A comment is a piece of descriptive text which explains some

aspect of a program. Program comments are totally ignored by the

compiler and are only intended for human readers. C++ provides two

types of comment delimiters:

� Anything after // (until the end of the line on which it appears)

is considered a comment.

� Anything enclosed by the pair /* and */ is considered a

comment.

The following program illustrates the use of both forms:
#include <iostream.h>

/* This program calculates the weekly gross pay for

a worker based on the total number of hours worked

and the hourly pay rate. */

int main (void)

{

int workDays = 5; // Number of work days per

week

float workHours = 7.5; // Number of work

hours per day

float payRate = 33.50; // Hourly pay rate

float weeklyPay; // Gross weekly pay

weeklyPay = workDays * workHours * payRate;

cout << "Weekly Pay = " << weeklyPay << '\n';

}

Judicious use of comments and consistent use of indentation

can make the task of reading and understanding a program much more

pleasant. Several different consistent styles of indentation are in use. I

see no fundamental reason to prefer one over another (although, like

most programmers, I have my preferences). The same applies to styles

of comments.

Comments should be used to enhance (not to hinder) the

readability of a program. The following points, in particular, should be

noted:

� A comment should be easier to read and understand than the

code which it tries to explain. A confusing or unnecessarily-

complex comment is worse than no comment at all.

� Over-use of comments can lead to even less readability. A

program which contains so much comment that you can hardly

see the code can by no means be considered readable.

� Use of descriptive names for variables and other entities in a

program, and proper indentation of the code can reduce the

need for using comments.

Once something has been stated clearly in the language, it

should not be mentioned a second time in a comment. For example:
a = b+c; // a becomes b+c

count++; // increment the counter
Such comments are worse than simply redundant. They

increase the amount of text the reader has to look at, they often obscure

INTRODUCTION TO C++ UNIT II

INSTITUTE OF DISTANCE & OPEN LEARNING 49

the structure of the program, and they may be wrong. Note, however,

that such comments are used extensively for teaching purposes in

programming language textbooks such as this. This is one of the many

ways a program in a textbook differs from a real program.

My preference is for:

1) A comment for each source file stating what the declarations in

it have in common, references to manuals, general hints for

maintenance, etc.

2) A comment for each class, template, and namespace

3) A comment for each nontrivial function stating its purpose, the

algorithm used (unless it is obvious), and maybe something

about the assumptions it makes about its environment

4) A comment for each global and namespace variable and

constant

5) A few comments where the code is non-obvious and/or non-

portable

6) Very little else.

A well-chosen and well-written set of comments is an essential part

of a good program. Writing good comments can be as difficult as

writing the program itself. It is an art well worth cultivating.

5.9 SUMMARY
� The standard output in C++ is done by applying the overloaded

operator of insertion (<<) on the cout stream.

� The standard input in C++ is done by applying the overloaded

operator of extraction (>>) on the cin stream.

� Escape characters are special characters preceded by a

backslash (\).

� Preprocessor directives are lines included in the code of our

programs that are not program statements but directives for the

preprocessor. These lines are always preceded by a hash sign

(#).

� Preprocessor directives are

� Macro definitions - #define, and #undef

� Conditional Inclusions - #ifdef, #ifndef, #if, #endif,

#else, and #elif

� Source File Inclusion - #include

� Pragma Directive - #pragma

� Error Directive - #error

INTRODUCTION TO C++ UNIT II

INSTITUTE OF DISTANCE & OPEN LEARNING 50

� When you have a choice, prefer the standard library to other

libraries.

� Do not think that the standard library is ideal for everything.

� Remember to #include the headers for the facilities you use.

� Remember that standard library facilities are defined in

namespace std.

� Use namespaces to express logical structure.

� Place every nonlocal name, except main(), in some namespace.

� Use the Namespace :: member notation when defining

namespace members.

� Use using namespace only for transition or within a local

scope.

� Keep comments crisp.

� Maintain a consistent indentation style.

5.10 UNIT END EXERCISES
5.10.1 Questions:
These questions are intended as a self-test for readers.

1) Explain role of preprocessor?

2) What is a preprocessor directive? Explain them?

3) What is a namespace? Explain its functionality?

4) How does using-declaration differ from using-directive?

5) What is wrong with these macro definitions?

a. #define PI = 3.141593;

b. #define MAX(a,b) a>b ? a : b

c. #define fac(a) (a)*fac((a)-1)

6) Write directives for the following:

a. Defining Small as an unsigned char when the symbol

PC is defined, and as unsigned short otherwise.

b. Including the file basics.h in another file when the

symbol CPP is not defined.

c. Including the file debug.h in another file when release

is 0, or beta.h when release is 1, or final.h when

release is greater than 1.

5.10.2 Programming Projects:

INTRODUCTION TO C++ UNIT II

INSTITUTE OF DISTANCE & OPEN LEARNING 51

1) Writing programs that solve the Programming Projects helps to

solidify your understanding of the material and demonstrates

how the chapter’s concepts are applied.

2) Write a program like ‘‘Hello, world!’’ that takes a name as a

command-line argument and writes ‘‘Hello, name!’’. Modify

this program to take any number of names as arguments and to

say hello to each.

3) What will the following program output when executed?

#include <iostream.h>

char *str = "global";

void Print (char *str)

{

cout << str << '\n';

{

char *str = "local";

cout << str << '\n';

cout << ::str << '\n';

}

cout << str << '\n';

}

int main (void)

{

Print("Parameter");

return 0;

}

5.11 FURTHER READING

Bjarne Stroustrup, “The C++ Programming Language: Second

Edition”.

Herbert Schildt, “The C++ Complete Reference”

E Balagurusamy, “Object Oriented Programming C++”, Third Edition.

John Hubbard “Fundamentals of Computing with C++”

����������������

INTRODUCTION TO C++ UNIT 3

INSTITUTE OF DISTANCE & OPEN LEARNING 91

6
Chapter 6

Decisions

Unit Structure

6.1 Introduction

6.2 Decision Control Structures

6.2.1 If

6.2.2 if – else

6.2.3 conditional operator

6.2.4 switch

6.3 Compound statements

6.4 Increment and decrement operators.

6.5 Review Questions

6.6 References & Further Reading

6.1. Introduction

The execution of statements in a program by default is sequential.

But sometimes there are such situations where the problem statement and

the program logic demands that the program execution or flow be

directed or branched to a particular set of statements rather than the other.

Ex. Finding greater of 2 given numbers.

This kind of situation involves decision making. C++ offers the following

decision control structures:

1. if

2. if-else

3. conditional operator

4. switch.

6.2 Decision Control Structure

6.2.1 if statement:

The syntax of if statement is as follows:

INTRODUCTION TO C++ UNIT 3

INSTITUTE OF DISTANCE & OPEN LEARNING 92

if (expression is true)

execute statement;

• Here, if is a keyword. It tells the compiler that what follows is a

decision control structure.

• An if statement is always followed by an expression or condition

which is enclosed within a pair of parenthesis.

• The expression is evaluated and will be either true or false. If true

then the statement following the if statement is executed, if false

then this statement is skipped and the execution continues from

next statement.

• Every non zero value will be considered true be it positive or

negative.

• Expression or condition is usually a combination of variables and

or constants and operators.

• Examples of expressions used in if statement:

(a>b) // combination of variables & relational operator

(x<5) // combination of variables & relational operator

• In general an expression is formed using relational operators.

Relational operators are used to compare the values of two

variables. We can use the relational operators to construct the

following types of expressions:

Expression Is true if

A >B A is greater than B

A < B A is less than B

A <= B A is less than or equal to B

A >= B A is greater than or equal to B

A == B A is equal to B

A != B A is not equal to B

• Example : The following program written in c++ prompts the user

for a number. If the user enters the number 3 it prints a particular

string, if the user enters any other number it prints nothing.

/**

Program 6.1.

Author : Nikhil Pawanikar

Description : Program to take one input from user. If number

equals to 3

INTRODUCTION TO C++ UNIT 3

INSTITUTE OF DISTANCE & OPEN LEARNING 93

 Print a string on the screen, if not do nothing.

*******/

#include<iostream.h>

#include<conio.h>

int main()

{

int a;

cout<<”enter the value of a\t”;

cin>>a;

if(a==3)

 cout<<”A equals to 3”;

getch();

return 0;

}

• Output

First Run:

enter the value of a 4 //nothing happens

Second Run:

enter the value of a 3

A equals to 3

• The above program and the execution of if statement will be

better understood by the following flowchart:

INTRODUCTION TO C++

INSTITUTE OF DISTANCE & OPEN LEARNING

• In case multiple statements are to be executed if the expression is

true, those statements can be put inside a set of parenthesis { } . If

the condition is true the statements in the block following the

parenthesis is

• Ex.

if(a<b)

{

cout<<”A is less than b”;

a=a+1;

}

Note: A semicolon is not used with if statement after the } end bracket, it

is used only with simple if statement that executes single instruction.

6.2.2 if-else statement

• The general syntax of

if (expression

else

Note: single statement is executed i

statement is excuted if condition is false

OR

 UNIT 3

INSTITUTE OF DISTANCE & OPEN LEARNING

In case multiple statements are to be executed if the expression is

true, those statements can be put inside a set of parenthesis { } . If

the condition is true the statements in the block following the

parenthesis is executed.

if(a<b)

cout<<”A is less than b”;

a=a+1;

Note: A semicolon is not used with if statement after the } end bracket, it

is used only with simple if statement that executes single instruction.

statement:

The general syntax of if – else statement is as follows

expression is true)

execute statement;

execute statement;

single statement is executed if condition is true else single

statement is excuted if condition is false

UNIT 3

 94

In case multiple statements are to be executed if the expression is

true, those statements can be put inside a set of parenthesis { } . If

the condition is true the statements in the block following the

Note: A semicolon is not used with if statement after the } end bracket, it

is used only with simple if statement that executes single instruction.

f condition is true else single

INTRODUCTION TO C++ UNIT 3

INSTITUTE OF DISTANCE & OPEN LEARNING 95

if (expression is true)

{

 execute statement;

 execute statement;

 execute statement;

}

else

{

 execute statement;

 execute statement;

 execute statement;

}

Note: The Block of statements in parenthesis {} is executed if

condition is true else the other block of statements following else

is executed if condition is false.

• The if-else statement is slightly different version of if statement.

Here if the condition is found to be false other statements are

executed. If the condition or expression evaluates to true the

statement (single)/ block of statements following if is executed, if

it evaluates to false then the statement(single)/block of

statement s following the keyword else is executed.

• The expressions/conditions are the same as described above in if

statement and may be relational expressions.

• Example : Consider the following program that prompts the user

to enter 2 numbers and prints the greater of two numbers on the

screen.

/**

Program 6.2

Author : Nikhil Pawanikar

Description : Program to take two inputs from user and printe

the greater

 Of the two

*******/

#include<iostream.h>

#include<conio.h>

INTRODUCTION TO C++

INSTITUTE OF DISTANCE & OPEN LEARNING

int main()

{

int a,b;

cout<<”enter the value of a & b

cin>>a>>b;

if(a>b)

 cout<<”

else

 cout<<”

getch();

return 0;

}

• Output

First Run:

Enter the value of a & b

B is greater than A

Second Run:

Enter the value of a & b

A is greater than B

• The above program could be better understood with the following

flowchart:

 UNIT 3

INSTITUTE OF DISTANCE & OPEN LEARNING

cout<<”enter the value of a & b\t”;

cout<<”\n A is greater than B”;

cout<<”\n B is greater than A”;

Enter the value of a & b 2 4

B is greater than A

the value of a & b 8 4

A is greater than B

The above program could be better understood with the following

UNIT 3

 96

The above program could be better understood with the following

INTRODUCTION TO C++ UNIT 3

INSTITUTE OF DISTANCE & OPEN LEARNING 97

Nested if-else statements:

• C++ allows nesting of if-else statements ie. We can have another if or

if-else statement inside either the if part or else part as follows:

if(condition)

 {

 statements;

 if(condition)

 {

 statements;

 }

 else

 {

 statements;

 }

 statements;

 }

else

 {

 statements;

 }

if(condition)

 {

 statements;

 }

else

 {

 statements;

 if(condition)

 {

 statements;

 }

 else

 {

 statements;

 }

 statements;

 }

/***

Program 6.3

Author : Nikhil Pawanikar

Description : Program to take three inputs from user and print the

greater

 Of the three using nested if-else statements

**

****/

#include<iostream.h>

#include<conio.h>

int main()

{

 int a, b, c, greatest;

 cout<<"Enter the valules for a, b & c \n";

 cin>>a>>b>>c;

INTRODUCTION TO C++ UNIT 3

INSTITUTE OF DISTANCE & OPEN LEARNING 98

if(a > b)

{

 if(a>c)

 {

 cout<<"\n A is the greatest of three";

 }

 else

 {

 cout<<"\n C is the greatest of three";

 }

}

else

{

 if (b>c)

 {

 cout<<"\n B is the greatest of three";

 }

 else

 {

 cout<<"\n C is the greatest of three";

 }

}

 getch();

 return 0;

}

The flowchart for nested if else for the above program is as follows:

INTRODUCTION TO C++

INSTITUTE OF DISTANCE & OPEN LEARNING

6.2.3 Conditional operator

• It is also known as ternary operator since it takes three parameters.

• It is represented as

• In one sense it is short form of if

• Its syntax is as follows:

Expression 1 ?

• It is read as follows: If Expression 1 is true. i.e non zero, expression 2

is returned else expression 3 is returned.

• Example :

int a = 3;

int b = (a > 5 ? 1 ; 0);

In the above example is the first line reads an assignment statement

where variable a is assigned the value 3.

 UNIT 3

INSTITUTE OF DISTANCE & OPEN LEARNING

onditional operator:

It is also known as ternary operator since it takes three parameters.

It is represented as ? :

In one sense it is short form of if-else statement.

Its syntax is as follows:

Expression 1 ? Expression 2 : Expression3;

It is read as follows: If Expression 1 is true. i.e non zero, expression 2

is returned else expression 3 is returned.

int a = 3;

int b = (a > 5 ? 1 ; 0);

In the above example is the first line reads an assignment statement

where variable a is assigned the value 3.

UNIT 3

 99

It is also known as ternary operator since it takes three parameters.

It is read as follows: If Expression 1 is true. i.e non zero, expression 2

In the above example is the first line reads an assignment statement

INTRODUCTION TO C++ UNIT 3

INSTITUTE OF DISTANCE & OPEN LEARNING 100

The second line uses conditional operator. Her if value of a is greater

than 5 then b is assigned a value of 1 else a value of zero.

• With the if-else statement the above example could be written as:

int a = 3;

int b;

if(a > 5)

b= 1;

else

b= 0;

• Conditional operators need not be limited to arithmetic expressions

only. It can also be used as follows:

char gender;

cout<<”enter gender\t”;

cin>>gender;

(gender==’m’ ? cout<<”Gender is Male” : cout<<”Gender is Female”);

If the user enters ‘m’ then the line printed will be “Gender is Male”

else the line printed will be “Gender is Female”.

• Nesting of conditional operators is also possible. Ex. Greater of three

numbers

int a =4, b=5, c=2;

int greater;

greater = (a > b ? (a > c ? a : c) : (b > c ? b : c));

• The only limitation of Conditional operator is that it allows only one

statement to executed after ? or :

• Example:

/***

Program 6.3

Author : Nikhil Pawanikar

Description : Program to take three inputs from user and print the

greater

 Of the three using conditional operator

***/

#include<iostream.h>

#include<conio.h>

INTRODUCTION TO C++ UNIT 3

INSTITUTE OF DISTANCE & OPEN LEARNING 101

int main()

{

 int a, b, c, greatest;

 cout<<"Enter the valules for a, b & c \n";

 cin>>a>>b>>c;

 (a > b ? (a > c ? greatest = a : greatest = c) : (b > c ? greatest = b :

greatest = c));

 cout<<"\nGreatest of three is "<< greatest;

 getch();

 return 0;

}

Note: Semicolon is used only once with conditional opertors at the end of

statement.

6.2.4 switch statement:

• We use if statements to choose one among the available

alternatives.

• When the number of alternatives goes on increasing the

complexity to implement also goes on increasing.

• C++ has a multiway decision statement called switch.

• The possible values of expression/condition is represented by

case. A switch statement can have multiple cases representing

multiple decisions to be taken.

• The keyword break is used inside every case of switch statement

to exit the statement once the case is matched and executed.

• The syntax of a switch statement is as follows:

 switch(integer expression)

 {

 case constant1:

 do this;

 break;

 case constant1:

 do this;

 break;

 case constant1:

 do this;

 break;

INTRODUCTION TO C++ UNIT 3

INSTITUTE OF DISTANCE & OPEN LEARNING 102

 default:

 do this;

 break;

 }

• The integer expression is any expression that will evaulate to

give an integer value.

• The keyword case is followed by an integer or character constant

which may represent the value of integer expression. Each

constant character or integer must be unique.

• Every case contains a set of valid c++ statements. The keyword

break is the last statement inside every case and forces the

execution to come out of the switch statement. Without break the

execution is said to fall through the cases i.e if there is no break

the execution proceeds to the next case even if it is not supposed

to execute.

• When a program containing a switch statement is executed the

integer expression following the switch keyword is evaluated

first. This value is then matched one by one with the constant

values that follow the case keyword. If a match is found the

statements following the case are executed. If no match is found

then the statements under the default case are executed.

• Example: Consider the following program that displays a specific

message as per the input given by the user.

/**

Program 6.4

Author : Nikhil Pawanikar

Description : This program prompts the user to enter any

 number between 1-5 and displays corresponding

 papers nomenclature.

**/

#include<iostream.h>

#include<conio.h>

int main()

{

 int number;

 cout<<"Semester 1 has five papers."<<endl;

 cout<<"Enter any number in 1 - 5 to know the nomenclature of

the paper \n";

 cin>>number;

cout<<endl;

 switch(number)

INTRODUCTION TO C++ UNIT 3

INSTITUTE OF DISTANCE & OPEN LEARNING 103

 {

 case 1:

 cout<<"Paper 1 is Professional Communication Skills\n";

 break;

 case 2:

 cout<<"Paper 2 is Applied Mathematics-1 \n";

 break;

 case 3:

 cout<<"Paper 3 is Fundamentals of digital computing \n";

 break;

 case 4:

 cout<<"Paper 4 is Electronics & Communication

Technology \n";

 break;

 case 5:

 cout<<"Paper 5 is Introduction to C++ Programming -1

\n";

 break;

 default:

 cout<<"Not a valid input";

 break;

 }

 getch();

 return 0;

}

Output:

First Run:

Semester 1 has five papers.

Enter any number in 1 - 5 to know the nomenclature of the paper

5

Paper 5 is Introduction to C++ Programming -1

Second Run:

Semester 1 has five papers.

Enter any number in 1 - 5 to know the nomenclature of the paper

8

Not a valid input

• In the program above the user is supposed to enter any number

between 1 – 5 which stands for the papers at FYBScIT Sem I.

The value entered by the user is stored in a variable number which

INTRODUCTION TO C++ UNIT 3

INSTITUTE OF DISTANCE & OPEN LEARNING 104

also happens to be the integer expression following the keyword

switch.

• Since we have 5 subjects at sem I of FYBScIT we have written 5

cases. Here integer constants are used since the integer expression

is an integer. If the expression was character then the case

constants would also have to be characters.

• In the first run when the user enters 5, 5 is stored in the variable

number. Then the value of variable number is matched with every

case constant inside switch statement in the order in which they

appear. Since a match is found that equals to 5, the statements

following that case are executed.

• When the user enters 8 as an input there is no match with the case

constants so the default case is executed.

• The same program with character input and character constant

would look like this:

/**

Program 6.5

Author : Nikhil Pawanikar

Description : This program prompts the user to enter any

 character between A-E and displays corresponding

 papers nomenclature.

**/

#include<iostream.h>

#include<conio.h>

int main()

{

 char choice;

 cout<<"Semester 1 has five papers."<<endl;

 cout<<"Enter any character from A - E to know the nomenclature of the

paper \n";

 cin>>choice;

 switch(choice)

 {

 case 'A':

 cout<<"Paper A is Professional Communication Skills\n";

 break;

INTRODUCTION TO C++ UNIT 3

INSTITUTE OF DISTANCE & OPEN LEARNING 105

 case 'B':

 cout<<"Paper B is Applied Mathematics-1 \n";

 break;

 case 'C':

 cout<<"Paper C is Fundamentals of digital computing \n";

 break;

 case 'D':

 cout<<"Paper D is Electronics & Communication Technology \n";

 break;

 case 'E':

 cout<<"Paper E is Introduction to C++ Programming -1 \n";

 break;

 default:

 cout<<"Not a valid input";

 break;

 }

 getch();

 return 0;

}

The flowchart for switch statement is as follows:

INTRODUCTION TO C++

INSTITUTE OF DISTANCE & OPEN LEARNING

6.3 COMPOUND STATEMENTS

• The statements that are written inside a pair of parenthesis { }, are

called compound statements.

• We have already seen the use of compound statements in if, if

else and switch statements.

• Ex.

Here the statements writt

statements, once the control passes into this block all the

statements inside it are executed unless forced to quit or jump out

before reaching the last statement.

Compound Conditions

• Just as we have compound statements we have compound

conditions too.

 UNIT 3

INSTITUTE OF DISTANCE & OPEN LEARNING

COMPOUND STATEMENTS

The statements that are written inside a pair of parenthesis { }, are

called compound statements.

We have already seen the use of compound statements in if, if

else and switch statements.

int a,b,c;

a=2,b=3,c=0;

if(a!=0)

{

c=a+b;

cout<<"c="<<c;

}

Here the statements written inside parenthesis { } are compound

, once the control passes into this block all the

statements inside it are executed unless forced to quit or jump out

before reaching the last statement.

Compound Conditions:

Just as we have compound statements we have compound

conditions too.

UNIT 3

 106

The statements that are written inside a pair of parenthesis { }, are

We have already seen the use of compound statements in if, if-

compound

, once the control passes into this block all the

statements inside it are executed unless forced to quit or jump out

Just as we have compound statements we have compound

INTRODUCTION TO C++ UNIT 3

INSTITUTE OF DISTANCE & OPEN LEARNING 107

• Compound conditions are used to combine two or more

conditions using logical operators && (and), || (or) and ! (not).

• They are defined as:

A && B - Evaluates to true if both A and B are true

A || B - Evaluates to true if either A or B is true or in

other words

Evaluates to false if and only if both A & B are

both false

! A - Evaluates to true if and only if A evaluates to false

• Using truth tables it could be defined as follows:

A B A&&B A||B !A

T T T T F

T F F T F

F T F T T

F F F F T

Example : Program to find the greater of 3 numbers

/***

Program 6.3

Author : Nikhil Pawanikar

Description : Program to take three inputs from user and print the

greater

 Of the three using nested if-else statements

***/

#include<iostream.h>

#include<conio.h>

int main()

{

 int a, b, c, greatest;

 cout<<"Enter the valules for a, b & c \n";

 cin>>a>>b>>c;

if(a > b && a >c)

{

 cout<<"\n A is the greatest";

}

if (b>a && b > c)

INTRODUCTION TO C++ UNIT 3

INSTITUTE OF DISTANCE & OPEN LEARNING 108

 {

 cout<<"\n B is the greatest of three";

 }

if (c>a && c > b)

 {

 cout<<"\n C is the greatest of three";

 }

 getch();

 return 0;

}

6.4 INCREMENT (++) & DECREMENT(--)

OPERATORS

• These are unary operators i.e. they take only one operand.

• Increment & Decrement operators are used to increase or decrease

the value of integer variables or integer constants by 1.

• There are two forms of Increment operator: Pre-increment &

Post-increment.

• Example: an integer variable m can be incremented in two ways:

m++; ++m;

& decremented in two ways m--; --m;

/***

Program 6.

Author : Nikhil Pawanikar

Description : Program to display the use of Increment & Decrement

operators

***/

#include<iostream.h>

#include<conio.h>

int main()

{

 int a, b;

 a=0;

 b=2;

 clrscr();

 a = ++b;

 cout<<" value of a is "<<a; //value of a is 3

 cout<<" value of b is "<<b; //value of b is 3

 b=4;

 a=b++;

 cout<<" value of a is "<<a; //value of a is 4

INTRODUCTION TO C++ UNIT 3

INSTITUTE OF DISTANCE & OPEN LEARNING 109

 cout<<" value of b is "<<b; //value of a is 5

 a = --b;

 cout<<" value of a is "<<a; //value of a is 3

 cout<<" value of b is "<<b; //value of b is 3

 b=4;

 a=b--;

 cout<<" value of a is "<<a; //value of a is 4

 cout<<" value of b is "<<b; //value of a is 3

 getch();

 return 0;

}

6.5 Review Questions

1. Explain the different forms of if statement.

2. Explain the difference between if statement & switch statement.

3. What happens if we do not use break in switch statement?

4. Write a program in C++ for the following:

1. Take an integer number from the user and find if it is

even.

2. Take an integer number from the user and find if it is

odd or even.

3. Take the value of cost price and selling price of a

particular item from user and print if it profit or loss

and how much.

4. Take the value of 5 subjects from user. Calculate sum,

percentage and display grade(use compound

conditions)

5. Using switch case, write a program to perform

arithmetic operations (+,-,* ,/). Show a menu to the

user and allow selecting an option.

6.6 Reference & Further Reading

1. Let us C – Yashwant Kanetkar, Chapters 2 & 4.

2. Object Oriented Programming with C++ - E. Balaguruswamy,

Chapter 3

3. Programming in C++, Schaums Outlines – John R. Hubbard,

Chapters 2 &3.

INTRODUCTION TO C++ UNIT 3

INSTITUTE OF DISTANCE & OPEN LEARNING 109

Chapter 7

Looping Flow of Control

Unit Structure

7.1 Introduction

7.2 Loop Control Instructions

7.2.1 while

7.2.2 do while

7.2.3 for

7.3 Review Questions

7.4 References & Further Reading

7.1 INTRODUCTION

In the previous chapter we had seen the concept of Branching

Flow of control which involves making decision which involves

having a condition. If the condition is satisfied then the decision is to

execute a particular set of instructions, if not then another set of

instructions.

 This chapter is dedicated to Looping or iteration. It is used

when a set of instructions is to be executed multiple times or for a

fixed number of times until a particular condition is satisfied.

This repetitive action is done through Loop Control Instruction. C++

offers the following Loop Control Instructions:

1. for

2. while

3. do while

7.2 LOOP CONTROL INSTRUCTIONS

7.2.1 while loop:

• The while loop has the following syntax:

while (condition is true)

 statement;

Initialize counter variable;

while (condition is true)

{

statement;

statement;

increment counter;

INTRODUCTION TO C++ UNIT 3

INSTITUTE OF DISTANCE & OPEN LEARNING 110

}

• Here condition is an integer expression just like the one we have

seen in the previous chapter.

• When the system reads the keyword while it evaluates the

expression that follows.

If the expression is evaluated as true the statement following the

condition is executed. It may be a simple statement or a compound

statement enclosed in parenthesis { }.

• Example : consider the following example to find the cube of the

number entered by user.

/**

Program 7.1

Author : Nikhil Pawanikar

Description : Program to display sum of numbers upto n

**/

#include<iostream.h>

#include<conio.h>

int main()

{

 int num,sum=0;;

 clrscr();

 cout<<" \n Enter any positive integer number \n ";

 cin>>num;

int i=0;

 while(i<=num)

 sum=sum + i++;

cout<<"\n Sum of numbers till "<<num<<" = "<<sum;

 getch();

 return 0;

}

Output

First Run

Enter any positive integer number

2

Sum of numbers till 2 = 3

 Second Run

Enter any positive integer number

5

Sum of numbers till 5 = 15

• In the above example the while loop will execute a single statement

until the condition i<=num evaluates to true.

INTRODUCTION TO C++ UNIT 3

INSTITUTE OF DISTANCE & OPEN LEARNING 111

• The following example executes a set of statements once the

condition becomes true.

/**

Program 7.2

Author : Nikhil Pawanikar

Description : Program to display the cube of a number until the user

types zero

*************/

#include<iostream.h>

#include<conio.h>

int main()

{

 int num,cube=0;;

 clrscr();

 int i=0;

 while(i<=num)

 {

 cout<<" \n Enter any positive integer number to find its cube,

type 0 to exit \n ";

 cin>>num;

 cube = num * num * num;

 cout<<"\n Cube of num "<<num<<" = "<<cube;

 i=i+1;

 }

 getch();

 return 0;

}

Output

First Run

Enter any positive integer number to find its cube, type

0 to exit

2

Cube of 2 = 8

Second Run

Enter any positive integer number to find its cube, type

0 to exit

INTRODUCTION TO C++ UNIT 3

INSTITUTE OF DISTANCE & OPEN LEARNING 112

0

Cube of 0 = 0

Note: The while loop may execute infinite number of times if the

condition in the loop happens to be true for every value.

Ex.

while (1)

{

cout<<"\nhello world";

}

• Since the condition following while returns a non zero value it

happens to be true every time a condition is checked and runs

infinitely.

• Instead of incrementing the counter value we can also

decrement it.

• The flowchart for a while loop is as follows:

7.2.2 do while

• The syntax for the do-while loop is as follows:

do

 statement;

while (condition is true);

Initialize counter variable;

do{

 statement;

 statement;

 increment counter;

 } while (condition is true);

INTRODUCTION TO C++

INSTITUTE OF DISTANCE & OPEN LEARNING

• The do while loop executes in the same way as the while loop.

The only difference is that in do

executed at least once even if the condition is evaluated to be

false.

• The do while statement is always terminated with a semicolon

(;) after the loop ends.

• The following flow chart will help understand the do

loop:

• As shown in the flowchart above, the body of the loop is

executed and then the condition is tested. So when the program

executes the first iteration will always execute the loop and

then test for the condition. If the

will again execute the block of statements else it will exit the

loop and execute the next statement following the do

loop if any.

• Example: Consider the program discussed for while loop.

Cube of number. We shall see how

while loop.

/*******************

Program 7.3

Author : Nikhil Pawanikar

Description : Program to display the

wants to using

Do-while loop

#include<iostream.h>

#include<conio.h>

int main()

 UNIT 3

INSTITUTE OF DISTANCE & OPEN LEARNING 113

The do while loop executes in the same way as the while loop.

The only difference is that in do-while, the statements are

executed at least once even if the condition is evaluated to be

do while statement is always terminated with a semicolon

(;) after the loop ends.

The following flow chart will help understand the do-while

As shown in the flowchart above, the body of the loop is

executed and then the condition is tested. So when the program

executes the first iteration will always execute the loop and

then test for the condition. If the condition evaluates to true it

will again execute the block of statements else it will exit the

loop and execute the next statement following the do-while

Consider the program discussed for while loop.

Cube of number. We shall see how it could be done using do

Author : Nikhil Pawanikar

Description : Program to display the cube of a number until the user

**

#include<iostream.h>

UNIT 3

113

The do while loop executes in the same way as the while loop.

while, the statements are

executed at least once even if the condition is evaluated to be

do while statement is always terminated with a semicolon

while

As shown in the flowchart above, the body of the loop is

executed and then the condition is tested. So when the program

executes the first iteration will always execute the loop and

condition evaluates to true it

will again execute the block of statements else it will exit the

while

Consider the program discussed for while loop.

it could be done using do-

cube of a number until the user

*******************************/

INTRODUCTION TO C++ UNIT 3

INSTITUTE OF DISTANCE & OPEN LEARNING 114

{

 int num,cube=0;;

 char ans;

 clrscr();

 int i=0;

 do

 {

 cout<<" \n Enter any positive integer number to find its cube \n ";

 cin>>num;

 cube = num * num * num;

 cout<<"\n Cube of num "<<num<<" = "<<cube;

 i=i+1;

 cout<<"\nPress Y to continue";

 cin>>ans;

}while(ans=='y' || ans == 'Y');

 return 0;

}

Output

First Run

Enter any positive integer number to find its cube

2

Cube of 2 = 8

Press Y to continue

Y

Enter any positive integer number to find its cube

4

Cube of 4 = 64

Press Y to continue

a

Second Run

Enter any positive integer number to find its cube

3

Cube of 3 = 27

Press Y to continue

r

• In the above example the condition is on whether the user

wants to continue the program or exit.

• In first run, the program executes the loop for one time and

then checks the condition where the user enters ‘y’ and

executes again. Next time when the user was prompted to

continue, a key other than y was pressed and hence the

condition was false and the control came out of the loop.

• In the second run, the program executes the loop for one time

and then checks the condition where the user enters ‘y’ and

executes again. . Next time when the user was prompted to

INTRODUCTION TO C++ UNIT 3

INSTITUTE OF DISTANCE & OPEN LEARNING 115

continue, a key other than y was pressed and hence the

condition was false and the control came out of the loop.

INTRODUCTION TO C++ UNIT 3

INSTITUTE OF DISTANCE & OPEN LEARNING 116

7.2.3 for

• The syntax of the for loop is as follows:

for (initialization ; test condition ; increment/decrement loop

counter)

 statement;

 or

• The for loop allows to specify three things in a single line:

1. Create and initialize loop counter variable

2. Test condition

3. Increase or decrease the value of loop counter after every

iteration

• The flowchart of for loop is same as while loop.

for (initialization ; condition ; increment/decrement loop counter)

 {

 statement;

 statement;

 }

INTRODUCTION TO C++ UNIT 3

INSTITUTE OF DISTANCE & OPEN LEARNING 117

• Example:The program for calculating sum of numbers till n using

for loop is as follows:

/***

Program 7.4

Author : Nikhil Pawanikar

Description : Program to display sum of numbers upto n

***/

#include<iostream.h>

#include<conio.h>

int main()

{

 int num,sum=0;;

 clrscr();

cout<<" \n Enter any positive integer number \n ";

 cin>>num;

 for(int i =0; i<=num ; i ++)

 {

 sum=sum + i;

 }

 cout<<"\n Sum of numbers till "<<num<<" = "<<sum;

 getch();

 return 0;

}

Output:

First Run

Enter any positive integer number

2

Sum of numbers till 2 = 3

Second Run

Enter any positive integer number

INTRODUCTION TO C++

INSTITUTE OF DISTANCE & OPEN LEARNING

5

Sum of numbers till 5 = 15

• In the program above, for statement first initializes the variable

i to zero, then it checks for the condition. If the condition is true

the statements inside the block following for statement are

executed. Once the loop is over the value of i is incremented by

one and the condition is tested again.

• As long as the value of i happens to be less than or equal to

num the loop will execute. When the value of i becomes greater

than num the control is passed to the next statement after the

loop.

Nesting of Loops:

Nesting of loop control structures is possible in the same way

as in decision control.

7.3 REVIEW QUESTIONS

1. List and explain the statements under Loop Control Structure.

2. Explain the difference between the while and do

3. Explain the difference between the while and for loop.

4. Write a program in C++ to do the following:

5. Take a number from user and print Fibonacci series on the screen

containing that many numbers(i.e. 0 ,1, 1, 2, 3, 5, 8, 13, 21)

6. Print the odd and even number

7. Print the following pattern

7.4 REFERENCES & FURTHER

1. Let us C – Yashwant Kanetkar, Chapter 3.

 UNIT 3

INSTITUTE OF DISTANCE & OPEN LEARNING 118

Sum of numbers till 5 = 15

program above, for statement first initializes the variable

i to zero, then it checks for the condition. If the condition is true

the statements inside the block following for statement are

executed. Once the loop is over the value of i is incremented by

one and the condition is tested again.

As long as the value of i happens to be less than or equal to

num the loop will execute. When the value of i becomes greater

than num the control is passed to the next statement after the

sting of loop control structures is possible in the same way

as in decision control.

REVIEW QUESTIONS

List and explain the statements under Loop Control Structure.

Explain the difference between the while and do-while loop.

difference between the while and for loop.

Write a program in C++ to do the following:

Take a number from user and print Fibonacci series on the screen

containing that many numbers(i.e. 0 ,1, 1, 2, 3, 5, 8, 13, 21)

Print the odd and even number from 1 to 100

Print the following pattern

REFERENCES & FURTHER READING

Yashwant Kanetkar, Chapter 3.

UNIT 3

118

program above, for statement first initializes the variable

i to zero, then it checks for the condition. If the condition is true

the statements inside the block following for statement are

executed. Once the loop is over the value of i is incremented by

As long as the value of i happens to be less than or equal to

num the loop will execute. When the value of i becomes greater

than num the control is passed to the next statement after the

sting of loop control structures is possible in the same way

Take a number from user and print Fibonacci series on the screen

INTRODUCTION TO C++ UNIT 3

INSTITUTE OF DISTANCE & OPEN LEARNING 119

2. Object Oriented Programming with C++ - E. Balaguruswamy,

Chapter 3

3. Programming in C++, Schaums Outlines – John R. Hubbard,

Chapter 4.

4. Theory & Problems of Programming with c ++ – John R. Hubbard,

Chapter 3.

INTRODUCTION TO C++ UNIT 3

INSTITUTE OF DISTANCE & OPEN LEARNING 120

Chapter 8

Break and continue

Unit Structure

8.1 Introduction

8.2 Break and continue.

8.3 Manipulators: endl , setw,sizeof.

8.4 Type Cast Operators

8.5 Scope resolution operators

8.1. INTRODUCTION

In the previous chapter we studied Loop control structure. In this

chapter we study two mechanisms to bypass the looping construct.

These are break and continue.

Then we study the use of following manipulators:

 endl , setw,sizeof & finally operators like

Type Cast Operators & Scope resolution operators

8.2 BREAK AND CONTINUE

break

• Normally a while loop, a do..while loop, or a for loop will

terminate only at the beginning or at the end of the complete

sequence of statements in the loop’s block.

• But sometimes there may be situations when you require the

control to exit the loop. This can be fulfilled by using the break

keyword.

• A break statement terminates a loop. The control is transferred

to the first statement immediately following the loop construct.

• We have seen the use of break statement in switch statement.

When a match is found the statements under the case are

executed and then break statement causes the switch loop to

terminate.

• A break statement is usually associated with a condition, so there

will be an if statement.

INTRODUCTION TO C++ UNIT 3

The general form of break is as follows:

• Example: Consider program 7.1. to print sum of integers upto n to

be done using break

/***

Program 8.1

Author : Nikhil Pawanikar

Description : Program to display sum of numbers upto n using

break

**

****/

#include<iostream.h>

#include<conio.h>

int main()

{

 int num,sum=0;;

 clrscr();

cout<<" \n Enter any positive integer number \n ";

cin>>num;

int i=0;

while(1)

{

if(i>num)

 break;

sum=sum + i++;

}

cout<<"\n Sum of numbers till "<<num<<" = "<<sum;

 getch();

 return 0;

}

Output
First Run

Enter any positive integer number

INTRODUCTION TO C++ UNIT 3

2

Sum of numbers till 2 = 3

Second Run

Enter any positive integer number

5

Sum of numbers till 5 = 15

• The above program is same as program 7.1. Here the body of

while loop runs infinitely. The only condition implemented is

(i>num) if this condition evaluates to true the control will exit

the while loop and proceed to execute the statements after the

loop.

Continue:

• Sometimes there may be situations when you require the

control to exit the loop or skip the particular iteration and go to

the next. This can be done using the keyword continue.

• A continue statement causes the rest of the body of the loop to

be omitted, for the current iteration. The control is transferred

to the code that evaluates the normal test condition for loop

termination.

• The continue statement is similar to the break statement but

instead of terminating the loop, it transfers execution to the

next iteration of the loop. It continues the loop after skipping

the remaining statements in its current iteration.

• The general form of continue is as follows:

Example: Program to print the following pattern

1

1 2

1 2 3 4

1 2 3 4 5

Here the third line in the sequence is missing: 1 2 3

This pattern can be printed on the screen by using continue

INTRODUCTION TO C++ UNIT 3

INSTITUTE OF DISTANCE & OPEN LEARNING 123

/***

Program 8.2

Author : Nikhil Pawanikar

Description : Program to display the following pattern

using continue

 1

 1 2

 1 2 3 4

 1 2 3 4 5

***/

#include<iostream.h>

#include<conio.h>

int main()

{

 //int num,sum=0;;

 clrscr();

for(int i=0; i<=5 ; i++)

{

 if (i==3)continue;

 for(int j=1;j<=i;j++)

 {

 cout<<j;

 }

 cout<<endl;

}

 getch();

 return 0;

}

8.3 MANIPULATORS: ENDL , SETW ,SIZEOF.

The operators that are used to format the output that is supposed to be

displayed on the screen are called Manipulators.

1. endl manipulator:

It is used to skip the current line and go to the next line. It is same as \n

2. setw() manipulator:

It is used to right align the output.

To use setw() manipulator, the header file <iomanip> has to be

included in the program.

INTRODUCTION TO C++ UNIT 3

INSTITUTE OF DISTANCE & OPEN LEARNING 124

Example: Consider the program to input the contact information of a

person and display the output formatted to the right.

/**

Program 8.3

Author: Nikhil Pawanikar

Description: Program to display the use of manipulators setw() and

endl

**/

#include<iostream.h>

#include<conio.h>

#include<iomanip.h>

#include<string.h>

int main()

{

 char name[10],gender[6],location[10],contact_no[10];

 clrscr();

 cout<<"enter name:\t";

 cin>>name;

 cout<<"\nenter gender (m/f):\t";

 cin>>gender;

 cout<<"\nEnter Location: \t";

 cin>>location;

 cout<<"\nContact Number:\t";

 cin>>contact_no;

 cout<<"\NAME :"<<setw(15)<<name<<endl;

 cout<<"\nGENDER :"<<setw(15)<<gender<<endl;

 cout<<"\nLOCATION :"<<setw(15)<<location<<endl;

 cout<<"\NCONTACT NUMBER :"<<setw(15)<<contact_no;

 getch();

 return 0;

}

Output

enter name: NIKHIL P

nenter gender (m/f): MALE

Enter Location: SANTACRUZ

Contact Number: 9988776655

sizeof() operator

The sizeof operator yields the size of its operand with respect to the

size of type char

INTRODUCTION TO C++ UNIT 3

INSTITUTE OF DISTANCE & OPEN LEARNING 125

Example:

/**

Program 8.3

Author: Nikhil Pawanikar

Description: Program to display the use of manipulators setw() and

endl

**/

#include <iostream.h>

#include<conio.h>

int main()

{

 char var_name[] = "INSTITUE OF DISTANCE & OPEN LEARNING!";

 cout << "The size of a char is: "

 << "\nThe length of " << var_name << " is: "

 << sizeof(var_name);

 getch();

 return 0;

 }

Output

The length of INSTITUE OF DISTANCE & OPEN LEARNING! is

38

8.4 TYPE CAST OPERATORS

• C++ provides Type cast operators to explicitly convert the type of

variables or expression from one type to another.

• The general syntax is

type-name(expression)

• Here type-name is the target datatype we want to convert the

variable expression into.

• Example: float p = float(a);

• A typename behaves as if it is a function for converting a

variable type into desired target type.

• C++ has introduced the following new type cast operators:

1. const_cast

2. static_cast

INTRODUCTION TO C++ UNIT 3

INSTITUTE OF DISTANCE & OPEN LEARNING 126

3. dynamic_cast

4. reinterpret_cast

8.5 REVIEW QUESTIONS

1. Explain the use of break and continue with examples.

2. Explain the difference between break & continue.

3. Explain the use of Manipulators endl & setw.

4. Write short note on sizeof operator.

8.6 REFERENCES & FURTHER READING

1. Let us C – Yashwant Kanetkar, Chapter 3.

2. Object Oriented Programming with C++ - E. Balaguruswamy,

Chapter 3

3. Programming in C++, Schaums Outlines – John R. Hubbard,

Chapter 2.

INTRODUCTION TO C++ UNIT 4

INSTITUTE OF DISTANCE & OPEN LEARNING 127

9

Chapter 9

Introduction to Functions

Unit Structure

9.1 Introduction

 9.1.1. What is a function?

9.1.2. Why use a function?

9.1.3. How does it work in a program?

9.2. Types of Function

9.2.1. Built-in functions

9.2.1.1. Math Library Functions.

9.2.2. User defined functions

 9.2.2.1. Local Variables in Functions

9.2.2.2. Function Prototypes

9.3. Function overloading

9.4. Review Questions

9.5. References & Further Reading

9.1. INTRODUCTION

Usually programs are much larger than the programs that we have

seen so far. To make large programs manageable and less complicated,

they are broken down into subprograms. These subprograms are called

functions.

The basic principle of Functions is DIVIDE AND CONQUER.

Using functions we can divide a larger task into smaller subtasks that are

manageable.

9.1.1. What is a function?

1. A function is a self contained block of statements.

A function is self contained in the sense it may have its own variables

and constants

2. It is designed to do a well defined task.

INTRODUCTION TO C++ UNIT 4

INSTITUTE OF DISTANCE & OPEN LEARNING 128

Since a function is a part of a larger program (i.e. a subprogram) it has

a particular job to perform.

3. It has a name.

A function can be used (invoked) by the name given to it.

4. It may have return type

A function invoked by a calling program may or may not return a

value to it. In case it returns a value the functions return type is the

same as the variables data type.

5. A program that has functions should have the following three things in

it:

a. Function Declaration or Prototype

b. Function Call

c. Function definition, which are discussed in a later part of this

chapter.

9.1.2. Why use it?

1. Functions are a structured way to programming. Larger programs

get divided into smaller manageable units.

2. If a specific block of statements has to be executed multiple times

(for example. taking contact details from 100 users), it can be

written as a function and that function can be repeatedly executed.

This implies that redundancy in writing the same piece of code

multiple times is removed.

3. Dividing a large program into smaller subprograms using functions

help to easily code them and reduces the debugging effort.

9.1.3. How does it work in an program?

Consider the following:

INTRODUCTION TO C++ UNIT 4

INSTITUTE OF DISTANCE & OPEN LEARNING 129

The program to the left contains three functions. First one is the

main() function, second is function1() and third is function2().

The execution of any program begins with the execution of main

function. Unless there is a decision or looping construct the execution of

the program proceeds in a serial manner.

In the diagram to the left, the program execution begins with

main(), all the statements get executed.

A function gets called when the function name is followed by a

semicolon.

A function is defined when function name is followed by a pair of

braces in which one or more statements may be present.

When the system encounters a call to function1() the program

control jumps outside the main() function to execute the block of

statements named function1() shown by arrow number1.

Once the last statement in function1() is executed the program

control is again transferred to main() and the immediate statement after

main is executed, shown by arrow number2.

When the system encounters a call to function2() the program

control jumps outside the main() function again to execute the block of

statements named function2() shown by arrow number 3.

INTRODUCTION TO C++ UNIT 4

INSTITUTE OF DISTANCE & OPEN LEARNING 130

Once the last statement in function2() is executed the program

control is again transferred to main() and the immediate statement after

main is executed, shown by arrow number 4.

9.2. TYPES OF FUNCTIONS

Functions are of two types

1. Built-in functions

2. User defined functions

9.2.1 Built-in Functions:

• These are also called Standard Library Functions. As the name

suggests it is a Library of functions. These are the functions that

are already present .i.e. predefined in the system.

• They have been written, compiled and placed in libraries under

header files.

• We can use these functions in our programs by just specifying the

name of the header files that contains the function of our interest.

• Example: we have already used a built-in function in chapter 8, the

setw() manipulator. To use this function we have to add the header

file <iomanip.h> to our program. The function definition for setw()

is compiled and placed in the header file <iomanip.h>. If we do not

include this file in our program and still use setw(), the compiler

will return a FUNCTION PROTOTYPE MISSING error.

For code refer to example on Page >>pls enter page no of

program 8.3 chapter 8<<

9.2.1.1. Math Library Functions

• C++ provides a library of math related functions called Math

Library Functions.

• These functions are placed in header file <math.h> and it contains

59 functions.

• The following is a snapshot of the help menu of Turbo C++

displaying the list of available built-in functions under <math.h>.

INTRODUCTION TO C++ UNIT 4

INSTITUTE OF DISTANCE & OPEN LEARNING 131

 Example : Print Square Root of Numbers from 1 to 10

/***

Program 9.1

Author: Nikhil Pawanikar

Description: Program to display the use of math library functions

**

**************/

#include <iostream.h>

#include<conio.h>

#include<math.h>c

int main()

{

 cout<<"Number"<<"\tSquare Root\n";

 for(int i=1;i<=10;i++)

 {

 cout<<i<<"\t"<<sqrt(i)<<endl;

 }

 getch();

 return 0;

 }

Output

Number Square Root

1 1

2 1.414214

3 1.7320513

4 2

5 2.236068

INTRODUCTION TO C++ UNIT 4

INSTITUTE OF DISTANCE & OPEN LEARNING 132

6 2.44949

7 2.645751

8 2.282427

9 3

10 3.162278

• This program prints the square roots of the numbers 1 through 10.

The value of variable i from the loop counter is passed to sqrt(i).

• i is called the parameter passed to function sqrt.

• Each time the expression sqrt(x)is evaluated in the for loop, the

sqrt() function is executed for the value of i passed to it.

• Its actual code is hidden away within the Standard C++ Library.

• Following are some of the functions available under the header file

<math.h> and their uses:

9.2.2. User defined functions:

These are the functions other than the Standard Library Functions.

These are created by the users and the user has the flexibility to choose the

function name, the statements that will be executed, the parameters that

will be passed to the user & the return type of the function.

INTRODUCTION TO C++ UNIT 4

INSTITUTE OF DISTANCE & OPEN LEARNING 133

Any program using functions will have the following three necessary

things:

1. Function prototype or function declaration

It is the name of the function along with its return-type and

parameter list.

2. Function call

Any function name inside the main() followed by semicolon (;) is a

Function Call.

3. Function Definition:

A function name followed by a pair of parenthesis {} including

one or more statements.

• In case of built-in functions, function prototype and function

definition are not necessary, they have been already declared and

defined in the libraries.

• Consider the following example:

return-type

function1();

int main()

{

……………………..

……………………..

function1();

……………………..

……………………..

return 0;

}

function1()

{

……………………..

……………………..

return();

}

• The first line of the above example return-type function1(); is

called the function prototype or function declaration. It is used

to declare the function to the compiler.

This statement is always written outside(before) the main().

INTRODUCTION TO C++ UNIT 4

INSTITUTE OF DISTANCE & OPEN LEARNING 134

• The statement function1() along with the statements in the

parenthesis shown below is called the function definition. The

function definition contains the instructions to be executed when

the function is called.

function1()

{

………………..

……………….

}

 Function definition is always done outside the main().

• The statement function1(); inside main() is a function call.

A function gets called when the function name is followed by a

semicolon.

When this statement function1(); is executed the program control

gets transferred to the the function definition of function1() which

is outside the main(). All the statements inside function1() are

executed and then the control gets transferred to the next statement

after the function call.

Note:

From this point onwards Function prototype & Function definition means

prototype & definition for a user-defined function, Since only user-defined

functions have function prototype/ declaration and function definition.

Function Definition:

• A function is defined when function name is followed by a pair of

braces in which one or more statements may be present.

• A function definition has 2 parts

1. Function head

2. Function Body

• Example :

int square(int x)

{

return x*x; // returns

square of x:

}

INTRODUCTION TO C++ UNIT 4

INSTITUTE OF DISTANCE & OPEN LEARNING 135

• The function returns the square of the integer passed to it. Thus the

call square(3) would return 9.

1. Function Head

• The syntax for the head of a function is

return-type

name(parameter-list)

• The above statement tells the compiler three things about the

function:

i. Name of the function

ii. Its return-type i.e type of value to be returned by

the function

iii. Its parameter list.

 In the example shown above the head of the function is:

int square(int x)

i. square is the name of the function,

ii. int is the type of value that the function is returning

to main()

iii. and the parameter list (int x) contains a single

parameter that is passed to the function square by

the main()

2. Function Body

• The body of a function is the block of code that follows its

head.

• It contains the code that performs the function’s action.

• It includes the return statement that specifies the value that the

function sends back to the place where it was called usually

main().

• The body of the square function is

{

return x*x; // returns

square of x:

}

INTRODUCTION TO C++ UNIT 4

INSTITUTE OF DISTANCE & OPEN LEARNING 136

9.2.2.1. Local Variables in Functions

A variable can be declared inside a function definition, but it

would be only local to the function. It cannot be used anywhere outside

the function.

They exist only when the function is executing. The variables in

the parameter list of function definition are called formal arguments and

they are also local variables and exist only for the duration of the function

execution.

9.2.2.2. Function Prototypes:

• The general syntax of a function prototype is

return-type function-name

(parameter list);

• The above statement tells the compiler three things about the

function:

1. Return-type i.e type of value to be returned by the function

2. Name of the function

3. Parameter list. (the number of parameters the function will

receive and their data-types).

• A Function Prototype is terminated by a semicolon

• Example: The complete program for finding square of a program is

written as follows:

/***

Program 9.2

Author: Nikhil Pawanikar

Description: Program to display the square of a number entered by user.

 (Demonstrate the concept of function prototype)

**

**************/

#include <iostream.h>

#include<conio.h>

int square(int m); // Function Prototype

int main()

{

 int num, sqr=0;

INTRODUCTION TO C++ UNIT 4

INSTITUTE OF DISTANCE & OPEN LEARNING 137

 cout<<"\nEnter number to find its Square"<<"\t ";

 cin>>num;

 sqr=square(num); // Function call

 cout<<"\nSquare of "<<num<<" = " <<sqr;

 getch();

 return 0;

 }

int square(int x) // Function definition

{

return x*x; // returns square of x:

}

Output:

First Run

Enter number to find its Square 5

Square of 5 = 25

Second Run

Enter number to find its Square

Square of 8 = 64

• The statement below is called function declaration or function

prototype.

int

square(int m);

• The function prototype in the program above also contains the

same:

1. The function would return an integer value, hence, its

return type is int

2. The name of the function is square

3. The function receives one parameter of type integer from

the place where it is called from i.e. main().

• Following are some examples of function declaration:

float area(float length, float

breadth);

INTRODUCTION TO C++ UNIT 4

INSTITUTE OF DISTANCE & OPEN LEARNING 138

float perimeter(float side1,

float side2);

• Inside the function declaration each variable must be declared

independently, the following declaration is invalid

float sum_of_angle(int angle1, int

angle2, angle3);

• The parameter names are optional in a function declaration, they

are simply dummy variables.

 float sum_of_angle(int, int, int);

• The above is valid since a Function prototype expects only the

number of parameters and its data-types from the parameter list.

For every function to be used there should be a function prototype.

During program execution when the compiler encounters a

function call, it first matches the prototype having the same

number and type of arguments and then calls the appropriate

function for execution.

• A function prototype is different from a function call, it(function

call) does not indicate the return-type of the function.

• Actual & Formal arguments: In the program above, the

statement sqr= square(num);

The variable num being passed to the function square is called

actual parameter & and the variable x in the function head of

function square is called formal parameter.

9.3. FUNCTION OVERLOADING

• Overloading means using one thing for different purposes. C++

supports function overloading.

• Function overloading is also called FUNCTION

POLYMORPHISM. Under this, the same function name can be

used to create multiple function definitions to perform different

tasks.

• It means that we can have a set of functions that have the same

name but different signatures. A function signature includes its

return type and parameter list.

INTRODUCTION TO C++ UNIT 4

INSTITUTE OF DISTANCE & OPEN LEARNING 139

• Example: an overloaded function multiply() is shown below with

possible function prototypes and associated function calls and

function definitions.

//function declarations

 int multiply(int m, int n); //prototype 1

 int multiply(int m, int n, int p); //prototype 2

 double multiply(double m , double n); //prototype 3

 double multiply(double m , int n); //prototype 4

 double multiply(int m, double n); //prototype 5

//function calls

int mul = multiply(10, 20);

int mul = multiply(10, 20,3);

double mul = multiply(2.5, 3.5);

double mul = multiply(1.2, 3);

double mul = multiply(2, 3.5);

//function definitions

int multiply(int m, int n)

{

 return (m*n);

}

int multiply(int m, int n, int p)

{

 return (m*n*p);

}

double multiply(double m , double n)

{

 return (m*n);

}

double multiply(double m , int n)

{

 return (m*n);

}

double multiply(int m, double n)

{

 return (m*n);

}

INTRODUCTION TO C++ UNIT 4

INSTITUTE OF DISTANCE & OPEN LEARNING 140

When a function call is encountered the compiler tries to select the

best function to be executed. To do this the compiler matches the

prototype having the same number and type of arguments as in the

function call and then invokes the appropriate function for execution.

9.4 REVIEW QUESTIONS

1. What is a function?

2. Explain types of functions?

3. Explain function prototyping.

4. Explain user-defined functions

5. Explain built-in functions with examples

9.5 REFERENCES & FURTHER READING

1. Let us C – Yashwant Kanetkar, Chapter 5.

2. Object Oriented Programming with C++ - E. Balaguruswamy,

Chapter 4

3. Programming in C++, Schaums Outlines – John R. Hubbard,

Chapter 5.

Solved Example:

Program to do arithmetic operations using function and switch case.

#include <iostream.h>

#include <conio.h>

#include <process.h>

int getinput();

void arith(int);

void getdata();

void add();

void sub();

void mul();

void div();

double a, b;

int main()

{

 clrscr();

 int choice;

INTRODUCTION TO C++ UNIT 4

INSTITUTE OF DISTANCE & OPEN LEARNING 141

 while(1)

 {

 clrscr();

 choice= getinput();

 arith(choice);

 getch();

 }

 return 0;

}

int getinput()

{

 int input;

 cout<<"\n Select the operation you want to perform\n"

 <<"1. Addition\n"

 <<"2. Subtraction\n"

 <<"3. Multiplication\n"

 <<"4. Division\n"

 <<"5. Exit\n";

 cin>>input;

 return input;

}

void arith(int choice)

{

 switch(choice)

 {

 case 1:

 add();

 break;

 case 2:

 sub();

 break;

 case 3:

 mul();

 break;

 case 4:

 div();

 break;

 case 5:

 exit(1);

 default:

 cout<<"\n Please select a proper

input";

 break;

 }

INTRODUCTION TO C++ UNIT 4

INSTITUTE OF DISTANCE & OPEN LEARNING 142

}

void getdata(double &a, double &b)

{

 cout<<"\nEnter the values of a and b\t";

 cin>>a>>b;

}

void add()

{

 getdata(a,b);

 cout<<"\n Result of Addition is : "<<a+b;

}

void sub()

{

 getdata(a,b);

 cout<<"\n Result of Subtraction is : "<<a-b;

}

void mul()

{

 getdata(a,b);

 cout<<"\n Result of Multiplication is : "<<a*b;

}

void div()

{

 getdata(a,b);

 cout<<"\n Result of division is : "<<a/b;

}

INTRODUCTION TO C++ UNIT 4

INSTITUTE OF DISTANCE & OPEN LEARNING 143

10

Chapter 10

Unit Structure

10.1 Introduction

10.2 Call by value

10.3 Call by reference

10.4 Inline Functions and

10.5 Recursive functions,

10.6 Review Questions

10.7 References & Further Reading.

10.0 OBJECTIVES

10.1. INTRODUCTION

Now that we know what is a function? And how to use it? We can

proceed to some advanced topics related to functions. There are two ways

in which a function can be called, they are:

1. Call by value

2.Call by reference.

10.2. CALL BY VALUE

• The examples that we have seen above are all examples of call by

value. In this method of calling a function we pass the value of

variables to the function as parameters.

• Such function calls are called ‘call by value’. In call by value the

changes made to the formal parameters do not change the actual

parameters.

• The called function creates a new set of variables and copies the

values of actual arguments into formal arguments.

• The function does not have access to the variables declared in the

calling program and can only work on the copies of values i.e. the

formal arguments.

• Example: Consider the following program for swapping of two

numbers.

INTRODUCTION TO C++ UNIT 4

INSTITUTE OF DISTANCE & OPEN LEARNING 144

/***

Program

Author: Nikhil Pawanikar

Description: Program to swap the values of two numbers.

**

**************/

#include <iostream.h>

#include <conio.h>

void swap(int,int); //prototype

int main(void)

{

 int a,b;

 cout << "Please enter 2 positive integers:\t ";

 cin >> a>>b;

 cout<<"\n Values before swapping are (in main ()):\n a = "

 <<a<<"\t b = "<<b<<endl;

 swap(a,b); //call by value, actual arguments

 cout<<"\n Values after swapping are (in main ()):\n a = "

 <<a<<"\t b = "<<b<<endl;

 getch();

 return 0;

}

void swap(int m,int n) //definition, formal arguments

{

 int temp;

 cout<<"\n Values before swapping are (in swap ()):\n m = "

 <<m<<"\t n = "<<n<<endl;

 temp = m;

 m = n;

 n = temp;

 cout<<"\n Values after swapping are(in swap ()):\n m = "

 <<m<<"\t n = "<<n<<endl;

}

Output:

First Run

Please enter 2 positive integers: 1 4

Values before swapping are (in main ()):

a = 1 b = 4

Values before swapping are (in swap ()):

m = 1 n = 4

Values after swapping are (in swap ()):

m = 4 n = 1

INTRODUCTION TO C++ UNIT 4

INSTITUTE OF DISTANCE & OPEN LEARNING 145

Values after swapping are (in main ()):

a = 1 b = 4

Second Run

Please enter 2 positive integers: 11 51

Values before swapping are (in main ()):

a = 11 b = 51

Values before swapping are (in swap ()):

m = 11 n = 51

Values after swapping are (in swap ()):

m = 51 n = 11

Values after swapping are (in main ()):

a = 11 b = 51

• The above program swaps the values of two integers taken by the

user using a swap function that performs the swapping task.

• The swap function accepts 2 integers from the main function as

shown in the prototype.

• Before we do the swapping, we simply print the values of variables

a & b so that we may know the state of the variables (i.e. they

undergo a change or not).

• The statement swap(a,b); is an example of call by value where the

function swap is called by value. Here variables a & b are actual

parameters and their values are passed while invoking the swap

function.

• The function definition of swap(); shows int m and int n, these are

called formal parameters and they receive the values of variables a

& b passed from main().

• Inside swap(), before we swap the values of the variables m &n we

print their values on the screen. Once the swapping is done the

values of the variables m & n are again printed on the screen.

• When the control returns back to the main function, the values of

variables a & b are again printed on the screen.

• From the above program the following could be noted:

1. The values of actual parameters (a & b) are passed to the

formal parameters(m &n).

2. Any change done to the formal parameters do not change

the actual arguments as shown in the output.

INTRODUCTION TO C++ UNIT 4

INSTITUTE OF DISTANCE & OPEN LEARNING 146

10.3. CALL BY REFERENCE

• The call by value mechanism is a read only way of communication

with the function and it does not change the values of the actual

arguments. It makes the functions more self-contained, protecting

them against accidental side effects.

• But sometimes there may be situations where a function may need

to change the value of the parameter passed to it. This is done by

using the call by reference mechanism.

• To pass a parameter by reference instead of by value, we simply

append an ampersand, &, to the data type in the functions

parameter list which the local variable a reference to the argument

passed to it.

• Now the argument is read-write instead of read-only and any

change to the local variable inside the function will cause the same

change to the argument that was passed to it.

• When parameters are passed by reference, the formal arguments

become aliases to the actual arguments in the calling function. This

is similar to working with the same original values with two

different names.

• Reference Variable – A reference variable is an alias or alternate

name for a previously defined variable. Later on the two variable

names can be interchangeably used to represent the value.

The Syntax to create a reference variable is as follows:

data-type & reference-name =

variable-name;

INTRODUCTION TO C++ UNIT 4

INSTITUTE OF DISTANCE & OPEN LEARNING 147

Example:

int a = 20;

int & b = a; //b is a reference variable

cout<<a<<endl<<cout<<b; //will both print a value of 20

a=a+10;

cout<<b; //will print 30

• Example of swapping two numbers using pass by reference

/**

Program

Author: Nikhil Pawanikar

Description: Program to swap the values of two numbers (call by

reference)

************/

#include <iostream.h>

#include <conio.h>

void swap(int &,int &); //prototype

int main(void)

{

int a,b;

cout << "Please enter 2 positive integers:\t ";cin >> a>>b;

cout<<"\n Values before swapping are (in main ()):\n a = "

<<a<<"\t b = "<<b<<endl;

swap(a,b); //call by value, actual arguments

cout<<"\n Values after swapping are (in main ()):\n a = "

 <<a<<"\t b = "<<b<<endl;

getch();

return 0;

}

void swap(int & m,int & n) //definition, formal

argument

{

int temp;

cout<<"\n Values before swapping are (in swap ()):\n m =

"<<m<<"\t n = "<<n<<endl;

temp = m;

m = n;

n = temp;

cout<<"\n Values after swapping are(in swap ()):\n m = "

<<m<<"\t n = "<<n<<endl;

INTRODUCTION TO C++ UNIT 4

INSTITUTE OF DISTANCE & OPEN LEARNING 148

}

Output:

First Run

Please enter 2 positive integers: 1 4

Values before swapping are (in main ()):

a = 1 b = 4

Values before swapping are (in swap ()):

m = 1 n = 4

Values after swapping are (in swap ()):

m = 4 n = 1

Values after swapping are (in main ()):

a = 4 b = 1

Second Run

Please enter 2 positive integers: 11 51

Values before swapping are (in main ()):

a = 11 b = 51

Values before swapping are (in swap ()):

m = 11 n = 51

Values after swapping are (in swap ()):

m = 51 n = 11

Values after swapping are (in main ()):

a = 51 b = 11

The above program can be summarized as follows:

The following can be concluded:

• Using reference variable any changes made to the formal

parameters are reflected on the actual parameters since they are

simply aliases.

INTRODUCTION TO C++ UNIT 4

INSTITUTE OF DISTANCE & OPEN LEARNING 149

10.4 INLINE FUNCTIONS

• Using functions adds to the overhead of program execution. This

overhead involves time and space to invoke the function, passing

parameters, allocate memory for variables, store the values of

variables in the memory allocated, executing the instruction,

returning value to the calling function, etc.

• C++ offers the concept of inline functions to address this

problem. With inline functions the compiler replaces each call to

the function with explicit code for the function .i.e. An inline

function is expanded when the function is invoked.

• A function is made inline function by simply adding the keyword

inline to the function definition.

Ex.

inline int square(int m)

{

 return m*m;

}

• Using inline function involves a tradeoff between faster execution

and memory being used. A function with many instructions that is

called multiple times gets copied every time it is executed and

occupies more memory.

10.5 RECURSIVE FUNCTIONS

• In C++ , a recursive function is one which calls itself. It is a

function being executed where one of the instructions is to "repeat

the process". It sounds similar to a loop.

Ex.

void recursive();

int main()

{

recursive();

return 0;

}

void recursive()

{

recursive();

}

INTRODUCTION TO C++ UNIT 4

INSTITUTE OF DISTANCE & OPEN LEARNING 150

The above function will logically run in an infinite loop.

Example : Program to find the factorial of a number

/***

Program 9.2

Author: Nikhil Pawanikar

Description: Program to display factorial of a number entered by user by

using recursion

**

**************/

#include <iostream.h>

#include <conio.h>

int factorial(int);

int main(void)

{

 int number,fact;

 cout << "Please enter a positive integer: ";

 cin >> number;

 fact=factorial(number);

 cout << number << " factorial is: " << fact << endl;

 getch();

 return 0;

}

int factorial(int number)

{

 int temp;

 if(number <= 1)

{

 return 1;

}

 else

{

temp = number * factorial(number - 1);

 }

return temp;

}

Output:

First Run

Please enter a positive integer: 4

4 factorial is: 24

Second Run

INTRODUCTION TO C++ UNIT 4

INSTITUTE OF DISTANCE & OPEN LEARNING 151

Please enter a positive integer: 0

0 factorial is: 1

10.6. REVIEW QUESTIONS

1. Explain Call by value

2. Explain Call by reference

3. Explain the difference between call by value and call by reference

4. Write short notes on:

 a. Inline functions

 b. Recursion

5. Write a program to swap two numbers without using a third variable

using call by reference.

10.7. REFERENCES & FURTHER READING

1. Let us C – Yashwant Kanetkar, Chapter 5.

2. Object Oriented Programming with C++ - E. Balaguruswamy,

Chapter 4

3. Programming in C++, Schaums Outlines – John R. Hubbard,

Chapter 5.

Solved Example:

Program to swap two numbers without using a third variable using

call by reference.

#include <iostream.h>

#include <conio.h>

void swap(int &,int &);

int main(void)

{

 int a,b;

 clrscr();

 cout << "Please enter 2 positive integers: ";

 cin >> a>>b;

 cout<<"\n Values before swapping are (in main ()):\n a

= "

 <<a<<"\t b = "<<b<<endl;

INTRODUCTION TO C++ UNIT 4

INSTITUTE OF DISTANCE & OPEN LEARNING 152

 swap(a,b); //call by

value

 cout<<"\n Values after swapping are (in main ()):\n a =

"

 <<a<<"\t b = "<<b<<endl;

 getch();

 return 0;

}

void swap(int & m,int & n)

{

 m = m + n;

 n = m - n;

 m = m - n;

}

Output:

First Run

Please enter 2 positive integers: 1 4

Values before swapping are (in main ()):

a = 1 b = 4

Values after swapping are (in main ()):

a = 4 b = 1

Second Run

Please enter 2 positive integers: 11 51

Values before swapping are (in main ()):

a = 11 b = 51

Values after swapping are (in main ()):

a = 51 b = 11

}

INTRODUCTION TO C++ UNIT 5

INSTITUTE OF DISTANCE & OPEN LEARNING

11

Chapter 11

Derived Data types (Arrays, functions)

Unit Structure

11.0 Objectives

11.1 Introduction to arrays,

11.2 2-D arrays,

11.3 Multidimensional arrays,

11.4 Arrays in functions,

11.1 INTRODUCTION TO ARRAYS

What is array?

An array is an groups of elements that can be identifies as a similar

types.i.e array of integer types ,array of floating types , array of Character

types and so on.

Array can be categorized into two part

1) Single dimensional Array

2) Multi dimensional Array

How we declared an Array?

Just like declaration as ordinary variable of different types such as

int rollno, float avg, char name and so on,

As we mentioned in the definition of array , Array is an groups of

elements that can be identifies as a similar types. Yet there is difference

between ordinary variable and array variable that is you needs to tell the

compiler what kind of array is you are defining, an array of books? An

array of students? An arrays of cloths? because the compiler wants to

Know that how much amount of space will be required to stored an array

element or data item in the computer memory. When declaring the array

of elements in the program, the compiler will put each item of array in

appropriate location

Like any other variable, The syntax of declaration of an array is:

Datatypes variable_name[dimension/size]

INTRODUCTION TO C++ UNIT 5

INSTITUTE OF DISTANCE & OPEN LEARNING

Here datatypes could be an int, a float , an char etc,

Variable_name is following according to C++ naming rules ,After the

Variable_name is then, we have to specifies the dimension or size of an

array(i.e the size should be specifeid with the opening square and closing

square[]).

Some example of an declaring an Arrays.

int rollno[20];

char grade[100] ;

double marks[20];

int rollno[20]; declares a group of element or array of 20 values, each

element is being an integer.

char grade[100]; declares an array of 100 charcater values.

double marks[360]; declares an array of double-precision numbers. There

are 360 of these items in the group.

int rollno[20];

rollno is an array of 20 integer and each elements of an array are

accessible by the superscript(index) and if an array consist n element of

similar datatype ,then the array ranges is starting from 0 to n-1 because

the starting index of an array is 0 and ending is n-1.

Consider the above Example is: int rollno[20]; means the starting

index of rollno array is 0(known as lower bound) and ended with an last

index is 19(known as Upper bound)

Initializing an Array:

We can individually assigned value to an array such as

Rollno[0]=1; rollno[1]=2;…………..upto rolln0[19]=20;

Just like any variable can be initialized, an array also can be initialized. To

accomplish this, for a one-dimensional array, the syntax used is:

DataType variable_Name[dimension/size] = { element1, element2, ..,

element n};

the datatype specify that what kind of array you are declaring, then

followed by the array name, and the square brackets. After specifying the

dimension or not, and after the closing square bracket, type the assignment

operator. The elements, also called items that compose the array are

included between an opening curly brace '{' and a closing curly brace '}'.

INTRODUCTION TO C++ UNIT 5

INSTITUTE OF DISTANCE & OPEN LEARNING

Each element of an array is separate from the other by a comma operator.

After the bracing is complete then you end it with a semi-colon.

Consider an example:

int rollno[12]={1,2,3,4,5,6,7,8,9,10,11,12}

double distance[5] = {44.14, 720.52, 96.08, 468.78, 6.28};

If you have decided to initialize the array while you are declaring it, you

can omit the dimension. Therefore, these arrays can be declared as

follows:

int rollno[]={1,2,3,4,5,6,7,8,9,10,11,12}

double distance[] = {44.14, 720.52, 96.08, 468.78, 6.28};

Example:

Once you have initialized an array’s elements, you can display its

elements or items of array using cout. Here is an example:

#include <iostream.h>

int main()

{

 int rollno[] = {101, 102, 103, 104, 105};

 cout << "2nd member = " << rollno[1] <<endl;

 cout << "5th member = " << roll[4] << endl;

 return 0;

}

The result would produce:

2nd member = 102

5th member = 105

Using this technique, each element or item of the array can be accessed.

Here is an example:

#include <iostream.h>

int main()

{

 int rollno[] = {101, 102, 103, 104, 105};

 cout << " rollno 1: " << ro11no[0] << endl;

 cout << " rollno 2: " << rollno[1] << endl;

 cout << " rollno 3: " << rollno[2] << endl;

 cout << " rollno 4: " << rollno[3] << endl;

 cout << " rollno 5: " << rollno[4] << endl;

INTRODUCTION TO C++ UNIT 5

INSTITUTE OF DISTANCE & OPEN LEARNING

 return 0;

}

The result would produce:

rollno 1: 101

rollno 2: 102

rollno 3: 103

rollno 4: 104

rollno 5: 105

The Size of an Array:

• When array has been declared, the programmer has to decides that

how many element should have to initialize depend the size of array.

The size of array decrease or increases depend upon the requirement of

program.

• Sometimes the programmer doesn’t want to increase or decreases the

size of an array, One method is fixed the size of an array i.e constant ,

const is reserved keyword or Qualifier , if we declared the const

keyword with an variable assigned with certain value that value cannot

modified or altered during the execution of the program.

• If the program is long and the array is declared in some unusual place,

this could take some time. The alternative is to define a constant

keyword before declaring the array and use that constant to hold the

dimension or size of the an array. Here is an example:

#include <iostream.h>

int main()

{

const int number_Of_Items = 5;

int rollno[number_Of_Items]={101, 102, 103,104,

105};

 cout << " rollno 1: " << ro11no[0] << endl;

 cout << " rollno 2: " << rollno[1] << endl;

 cout << " rollno 3: " << rollno[2] << endl;

 cout << " rollno 4: " << rollno[3] << endl;

 cout << " rollno 5: " << rollno[4] << endl;

 return 0;

 }

The result would produce:

rollno 1: 101

rollno 2: 102

INTRODUCTION TO C++ UNIT 5

INSTITUTE OF DISTANCE & OPEN LEARNING

rollno 3: 103

rollno 4: 104

rollno 5: 105

You can use such a constant in a for loop to scan the array and access each

elements of an array. Here is an example:

#include <iostream.h>

int main()

{

 const int numberOfItems = 5;

 introllno[numberOfItems]={101,102,103,104,105};

 cout << "Members of the array\n";

 for(int i = 0; i < numberOfItems; ++i)

 cout << "rollno" << i + 1 << ": " <<

rollno[i] << endl;

 return 0;

}

In both cases, this would produce:

Members of the array

rollno 1: 101

rollno 2: 102

rollno 3: 103

rollno 4: 104

rollno 5: 105

We know that size of an array, that we can easily count the number of

element in given array , as the size of array is small , Consider the

situation where array size is long for example 300 or 500 , you wouldn't

start counting the number of members. The C++ provides the

sizeof()operator that can be used to get the dimension of an array. The

syntax you would use is:

sizeof(ArrayName) / sizeof(DataType)

Imagine you have declare an array as follows:

int number[] = {18, 42, 25, 12, 34, 15, 63, 72, 92, 26, 26, 12, 127, 4762,

823, 236, 84, 5};

Instead of counting the number of elements of this array, you can use the

INTRODUCTION TO C++ UNIT 5

INSTITUTE OF DISTANCE & OPEN LEARNING

sizeof() operator as follows:

int Number_OfItems_Of_TheArray = sizeof(Number)/sizeof(int);

 Advantage of using the sizeof operator is used to get the number of

elements of the array is that it can be used on a for loop to traverse from

an array, either to locate the element or to look for a value in the array.

Here is an example of using this concept:

#include <iostream.h>

int main()

{

 int rollno[] = { 101, 102, 103, 104, 105};

 // Using the sizeof operator to get the size

of the an array

 Int num = sizeof(distance) / sizeof(double);

 cout << "Array members and their values\n";

 // Using a for loop to scan an array

 for(int i = 0; i < num; ++i)

 cout << "rollno : " << i + 1 << rollno[i]

<< endl;

 return 0;

}

This would produce:

Array members and their values

rollno 1: 101

rollno 2: 102

rollno 3: 103

rollno 4: 104

rollno 5: 105

11.2 2-D ARRAYS

As we have seen the example of one- dimensional array, we also

have seen the how to initialized the data item / elements to one –

dimensional array

The array thats contain numbers of rows and columns like a the

matrix i.e. the array which contain the two square brackets and mentioned

the size of an arrays is called as a 2-D arrays or 2 dimensional arrays

Declaration of 2-D arrays:

INTRODUCTION TO C++ UNIT 5

INSTITUTE OF DISTANCE & OPEN LEARNING

Datatypes variablename[dimension/size][dimension/size]

int anArray[3][5]; // a 3-element array of 5-element arrays or three rows

and 5 columns

In this case, since we have 2 subscripts or index , this is called as a two-

dimensional array. In a two-dimensional array, the first subscript or index

consider as an row, and the 2nd subscript or index considers as an column.

the above two-dimensional array is laid out as follows:

[0][0] [0][1] [0][2] [0][3] [0][4]

[1][0] [1][1] [1][2] [1][3] [1][4]

[2][0] [2][1] [2][2] [2][3] [2][4]

A 2-dimensional array declaration defines as like of matrix of variables or

the same type:

int anArray[3][5]

anArray

anArray

[0][0]

anArray

[0][1]

anArray

[0][2]

anArray

[0][3]

anArray

[0][4]

anArray

[1][0]

anArray

[1][1]

anArray

[1][2]

anArray

[1][3]

anArray

[1][4]

anArray

[2][0]

anArray

[2][1]

anArray

[2][2]

anArray

[2][3]

anArray

[2][4]

Since computer memory is linear, the elements of a 2-dimensional

array are actually stored linear formed

int anArray[3][4]

anArray

[0][0]

anArray

[0][1]

anArray

[0][2]

anArray

[0][3]

anArray

[0][4]

anArray

[1][0]

• These variables can be referred to individually with the subscript

operator, e.g., anArray[1][2].

• The set of variables can be referred to as an aggregate with the array

name, e.g., anArray.

• In C++, the first element of an array has the subscript 0.

• In C++, the last element of an array with n element has the subscript n-

1.

• In C++, the range of valid index of an m x n array is [0..m-1[[0..n-1].

• Using a index outside of the valid range is an error. This error will not

be detected by the compiler; it will shown as a run time error. In

some cases, it will cause the program to crash; in other cases, the

INTRODUCTION TO C++ UNIT 5

INSTITUTE OF DISTANCE & OPEN LEARNING

program will appear to run normally, but will produce incorrect

results.

• The subscript of an array is also called an index.

• A two-dimensional array can called as an array of arrays.

Initialization:

Example of initialization:

 int anArray [2] [3] = { {1, 2, 3}, {4, 5, 6} };

or

 int anArray [] [] = { {1, 2, 3}, {4, 5, 6} };

or

 int anArray[] [] = { {1, 2, 3}, //row 0

 {4, 5, 6} };//row 1

Example of a two-dimensional array:

#include <iostream.h>

#define nNumRows 10

#define nNumCols 10

void main()

{

 int nProduct[nNumRows][nNumCols] = { 0};

 // Calculate a multiplication table

 for (int nRow = 0; nRow < nNumRows; nRow++)

 for (int nCol = 0; nCol < nNumCols; nCol++)

 nProduct[nRow][nCol] = nRow * nCol;

 // Print the table

 for (int nRow = 1; nRow < nNumRows; nRow++)

 {

 for (int nCol = 1; nCol < nNumCols; nCol++)

 cout << nProduct[nRow][nCol] << "\t";

 cout << endl;

 }

This program calculates and prints a multiplication table for all

values between 1 and 9. Note that when printing the table, the for loops

start from 1 instead of 0. This is to omit printing the 0 column and 0 row,

which would just be a bunch of 0s! Here is the output:

INTRODUCTION TO C++ UNIT 5

INSTITUTE OF DISTANCE & OPEN LEARNING

1 2 3 4 5 6 7 8 9

2 4 6 8 10 12 14 16 18

3 6 9 12 15 18 21 24 27

4 8 12 16 20 24 28 32 36

5 10 15 20 25 30 35 40 45

6 12 18 24 30 36 42 48 54

7 14 21 28 35 42 49 56 63

8 16 24 32 40 48 56 64 72

9 18 27 36 45 54 63 72 81

Example:

Write your own C++ program that transposes matrix. Program stores

given matrix dimensions and every single matrix element must be given.

Transposed matrix is the one with rows and columns switched.

#include <iostream.h>

#define ROW 50

#define COL 50

int main()

{

int i, j, m, n, temp;

int mat[ROW][COL];

 // variable dim is set to smaller value of defi

ned

 // maximal number of rows and columns

 int dim = (ROW < COL)? ROW : COL;

 // storing matrix size

 do {

 cout<<"Input number of rows”<< dim;

 cin>>m;

 cout<<"Input number of columns” << dim;

 cin>>n;

 }while (m < 1 || m > dim || n < 1 || n > dim);

 // storing matrix elements

 cout<<"\nInput of matrix elements :\n";

INTRODUCTION TO C++ UNIT 5

INSTITUTE OF DISTANCE & OPEN LEARNING

 for (i = 0; i < m; i++) {

 for (j = 0; j < n; j++) {

 cout<< i<< j;

 cin>>mat[i][j];

 }

 }

 // printing matrix before transposing

 cout<<"\n\nMatrix before transposing:\n";

 for (i = 0; i < m; i++) {

 for (j = 0; j < n; j++) {

 cout<< mat[i][j];

 }

 cout<<"\n";

 }

 // Tranpose Matrix

 for (i=0; i<m; ++i) {

 // second loop must start from i+1.

 for (j=i+1; j<n; ++j) {

 temp = mat[i][j];

 mat[i][j] = mat[j][i];

 mat[j][i] = temp;

 }

 }

 // print after transposing

 //i.e number of rows becomes number of columns ...

 cout<<"\nMatrix after transposing:\n";

 for (i = 0; i < n; i++) {

 for (j = 0; j < m; j++) {

 cout<< mat[i][j];

 }

 cout<<"\n";

 }

} // main

Example of program’s execution:

INTRODUCTION TO C++ UNIT 5

INSTITUTE OF DISTANCE & OPEN LEARNING

Input number of rows < 50: 3

Input number of columns < 50: 2

Input of matrix elements :

Input element [0][0] : 1

Input element [0][1] : 2

Input element [1][0] : 3

Input element [1][1] : 4

Input element [2][0] : 5

Input element [2][1] : 6

Matrix before transposing:

1 2

3 4

5 6

Matrix after transposing:

1 3 5

2 4 6

11.3 MULTIDIMENSIONAL ARRAYS

The elements of an array can be of any data type, An array of

arrays is called a multidimensional arrays.

Multidimensional arrays may be larger than two dimensions. Here

is a declaration of a three-dimensional array:

int anArray[5][4][3];

11.4 ARRAYS IN FUNCTIONS

Array variables as parameters:

When an array is passed as a parameter, only the memory address

of the an array is passed (but not the values of the variable which is

assigned to arrays index variable). An array as a parameter is declared

similarly to an array as a variable, but not size of an array (no limit)are

specified. The function doesnot know how much memory space is

allocated for an array.

Example -- Function to add numbers in an array:

INTRODUCTION TO C++ UNIT 5

INSTITUTE OF DISTANCE & OPEN LEARNING

This main program calls a function to add all the elements in an

array and uses the returned value to compute the average.

#include <iostream.h>

float addition(const float y[], const int size);

 / /prototype

 int main() {

 float a[1000]; // Declare an array of 1000 floats

 int n = 0; // count the number of values in a.

 while (cin >> a[n]) {

 n++;

 }

 cout << "Average = " << addition(a, n)/n << endl;

 return 0;

}

// sum adds the values of the array it is passed.

float addition(const float y[], const int size) {

 float total = 0.0; // the sum is accumulated

 for (int i=0; i<size; i++) {

 total = total + x[i];

 }

 return total;

}

INTRODUCTION TO C++ UNIT 5

INSTITUTE OF DISTANCE & OPEN LEARNING

12

Chapter 12

Introduction to pointers

Unit Structure:

12.1 Definition of pointer

12.2 Why Use Pointers?

12.3 Initializing a Pointer

12.4 A Pointer to a Pointer

12.5 Operations on Pointers

12.6 Pointers in function

12.7 void pointers

12.8 pointers to constant

12.9 Constant pointers

12.10 Generic pointer

12.1 INTRODUCTION TO POINTERS

 When you declare the variables in the program the complier

allocated a logical address to the variable in the main memory i.e When

you declare a variable in the progaram, the computer allocates amount of

space for that variable, and uses the variable's name to refer to that memory

space.

 When you declares an a varaibles in the program the space is created in

the memory that assigning the address of the particular variable that space

is used for holding the values of that particular variable. Therefore,

everything you declare has an address, just like the address of your house.

You can find out what address a particular variable is using. when you

declares a variable,its tell the compiler what kind of variable is .i.e which

data type variable has in the program i.e whether the variable consist the

integer, floating point character and so on.

12.1 DEFINITION OF POINTER

Pointer is an variable is used to hold the memory address of another

variable.

INTRODUCTION TO C++ UNIT 5

INSTITUTE OF DISTANCE & OPEN LEARNING

if you want to see variable's address of a particular variable, you can use

the &(ampersand) operator followed by the name of the variable.

Let consider an example for accesing the memory address of the variable

numOfStudents. As if you decaled the variable like

int numOfStudents;

you can get the address of variable numOfStudents and where the variable

laocation is loacted by using:

cout << &numOfStudents;

This program would give you the address of the declared variable:

#include <iostream.h>

int main()

{

 int num;

 cout << “ the address of variable num is: <<

 cout << "\n\n";

 return 0;

}

After executing the program, you could get:

The address of variable num at: 0x0065FDF4

Notes: The address of variable will differ when the program is execute on

different computers .

Here the variable address in Hexadecimal format.

12.2 Why Use Pointers?

When you declare an variable the operating system assisgned the

particular unique address to the variable in the main memory, as we

compile the program, the compiler assigned the logical address to the

memory, here the content which is stored in the logical address space is

modified through the pointer variable.

INTRODUCTION TO C++ UNIT 5

INSTITUTE OF DISTANCE & OPEN LEARNING

Consider the example pass by reference, you can pass an argument

to a function, the argument is passed using its address. This allows the

calling function to find the address of the variable (the argument) and athat

can be used to acesss the value directly. This allows the calling function to

alter the real value of the argument.

When you declare an array, you must specify the dimension of the

array. what if you don't know and don't want to know the dimension of the

array? Pointers provide an ability that regular arrays do not have. Since

pointers provides the better management system of memory, a pointer can

store an array of almost any size;

Using this feature, when declaring a pointer instead of an array, you

do not have to worry about the size of the array, the compiler will take care

of that.This feature also allows you to pass pointers to a function (just like

arrays) and return a value that has been altered even if the function is

declared as void. This is like a dynamic with multidimensional arrays.

Just any other ordinary variable in C++, you should declare and

initialize a pointer variable before using it. To declare a pointer variable,

use an identifier i.e. datatype , followed by an asterisk (*), followed by the

name of the pointer, and a semi-colon.

The Syntax for declaration of Pointer

DataType * Pointer_Name;

Pointer variable should be an int, a char, a double, etc. The

identifier should be the same type of identifier the pointer variable will

point to. Therefore, if you are declaring a pointer that will point to an

integer variable, the pointer identifier should be an integer.

The asterisk (*) that knows the compiler that the variable has be

declared is a pointer that point to an respective datatype. There are three

ways you can type the asterisk. These are

DataType* Pointer_Name;

DataType * Pointer_Name;

DataType *pointer_Name

Note that the pointer is an variable which also has the logical address

located in the memory

Applying this concept, a pointer can allow you to return many values from

a function; as opposite to regular argument passing(pass by a value) where

the data changed inside of the called function, when the execution of the

functin is over, the calling function regain its previous value . Therefore,

passing arguments as pointers allows a function to return many values,

even if a function is declared as void.

INTRODUCTION TO C++ UNIT 5

INSTITUTE OF DISTANCE & OPEN LEARNING

Since the name of the pointer is indeed the name of a variable, you will

follow the naming rules that govern every C++ variable.

#include <iostream.h>

int main()

{

 int num;

 int *ptr;

 cout << "The address of num is : " << &num <<

 cout << "The address of pointer is: " << &ptr

 cout << "\n\n";

 return 0;

}

After executing the program, you might get the result:

The address of num is : 0x0065FDF4

The address of pointer is : 0x0065FDF0

12.3 INITIALIZING A POINTER

As we have already seen that , a variable should be initialized before

being used. This allows the compiler to put value into the memory space

allocated for that variable.

To use a pointer varaible ptr . You need to tell the compiler that

pointer ptr will be used to point to the address of variable X . Do this you

should have to initialized the pointer variable by some value. A pointer is

initialized like an ordinary variable, by using the assignment operator (=).

There are two main ways you can initialize a pointer. When

declaring a pointer like this:

 int* Ptr;

initialize it by following the assignment operator with & operator and the

name of the variable, like this

int* Ptr = &Variable;

This program could also have the pointer initialized as:

#include <iostream.h>

 int main(){

 int num = 12;

INTRODUCTION TO C++ UNIT 5

INSTITUTE OF DISTANCE & OPEN LEARNING

 int *ptr = #

 cout << "The value of num is: " << num << "\n";

 cout << “The value of pointer variable is: " <<

*ptr;

 cout << "\n\n";

 return 0;

}

 The program would produce:

The value of num is: 12

The value of pointer variable is: 12

Another of the program, you can first declare both variables, then initialize

them later on,when you needed.

#include <iostream.h>

int main()

{

 int num;

 int *ptr;

 ptr = #

 num = 23;

 cout << " The value of num is: " << num << "\n";

 cout << The value of pointer variable is:= " <<

*ptr<< "\n";

 cout << "\n";

 return 0;

}

The program would produce:

The value of num is: 23

The value of pointer variable is: 23

Once you have declare a variable and assign it to a pointer, during the

course of your program, the value of a variable is likely to change, you can

therefore assign it a different value:

#include <iostream.h>

int main()

{

 int num;

 int *ptr;

 ptr = #

INTRODUCTION TO C++ UNIT 5

INSTITUTE OF DISTANCE & OPEN LEARNING

 num = 23;

 cout << " The value of num is: " << num <<

 "\n";

 cout << " The value of pointer variable is:

 " << *ptr << "\n";

 num = 35;

 cout << " The value of num is: " << num <<

 "\n";

 cout << " The value of pointer variable is:

 " << *ptr << "\n";

 cout << "\n";

 return 0;

}

The value of num is: 23

The value of pointer variable is: 23

The value of num is: 35

The value of pointer variable is: 35

Both *ptr and num have the same value. This allows you to change the

value of the pointer directly and affect the main variable meanwhile.

Therefore, you can safely change the value of the pointer and it will be

assigned accordingly.

To see an example, make the following change to the file:

#include <iostream>

int main()

{

 int num;

 int *ptr;

 ptr = #

 num = 26;

 cout << " The value of num is:" << num <<

 "\n";

 cout << " The value of Pointer variable is:

 " << *ptr << "\n";

 num = 35;

 cout << " The value of num is:" << num <<

 "\n";

 cout << " The value of Pointer variable is: " <<

*ptr << "\n";

 *ptr = 144;

INTRODUCTION TO C++ UNIT 5

INSTITUTE OF DISTANCE & OPEN LEARNING

 cout << " The value of num is: " << num <<

 "\n";

 cout << " The value of Pointer Variable is: " <<

*ptr << "\n";

 cout << "\n";

 return 0;

}

This would produce:

The value of num is: = 26

The value of Pointer Variable is: = 26

The value of num is: = 35

The value of Pointer Variable is: = 35

The value of num is: = 144

The value of Pointer Variable is: = 14

12.4 A POINTER TO A POINTER

In this program, you can declare a new variable that is a pointer

variable that itself points to another pointer. When you declaring such a

variable, precede it with two *. Sign.After declaring the pointer, before

using it, you must initialize it with a reference to a pointer, that is, a

reference to a variable that was declared as a pointer. Here is an example:

#include <iostream.h>

int main()

{

 int num = 26;

 int *ptr;

 int **ptrToPtr;

 ptr = #

 ptrToPtr = &pointer;

 cout << " The value of num is: = " << num <<

"\n";

 cout << " The value of pointer variable is: = "

<< *ptr << "\n";

 cout << " The value of pointer to pointer is: = "

<< **ptrToPtr << "\n";

 return 0;

}

This would produce:

The value of num is: = 26

The value of Pointer variable is: = 26

The value of Pointerto Pointer Variable is: = 26

INTRODUCTION TO C++ UNIT 5

INSTITUTE OF DISTANCE & OPEN LEARNING

After initializing a pointer, if you change the value of the variable that’s it

points to, the pointer value woud be change. Consider the following

program:

#include <iostream.h>

int main()

{

 int num= 26;

 int *ptr;

 int **ptrToPtr;

 ptr = #

 ptrToPtr = &ptr

 cout << " The value of num is: = " << num << "\n";

 cout << " The value of Pointer variable is: = " << *ptr <<

"\n";

 cout << "The value of Pointer to Pointer is: = "

<< **ptrToPtr << "\n";

 num = 4805;

 cout << "After changing the value of the main variable...\n";

 cout << " The value of num is: = " << num << "\n";

 cout << " The value of Pointer Variable is: = " << *ptr <<

"\n";

 cout << " The value of Pointer to Pointer variable is: = "

<< **ptrToPtr<<"\n";

 return 0;

}

This would produce:

The value of num is: = 26

The value of Pointer Variable is: = 26

The value of PointertoPointer Variable is: = 26

After changing the value of the main variable...

The value of num is: = 4805

The value of Pointer Variable is: = 4805

The value of PointertoPointer Variable is: =4805

12.5 OPERATIONS ON POINTERS

A variable has a value that supposed to change from time to time.

Since a pointer is a variable whose value points to another variable, the

value of a pointer is affected or updated by the variable it points to. You

can use indirection operator to change the value of a pointer when

changing its main variable.

INTRODUCTION TO C++ UNIT 5

INSTITUTE OF DISTANCE & OPEN LEARNING

To get a value from the user by using the cin operator. When using

a pointer to get a value from the user, please don't forget the * operator,

otherwise, the compiler would get confused.

We have already know how to get the value from the user and

display the value of a regular variable from the user:

#include <iostream.h>

int main()

{

 int students;

 cout << "Number of students: "

 cin >> students;

 cout << "\nNumber of students: " <<

 students;

 cout << "\n\n";

 return 0;

}

Once you have got a value from the user and store it in a variable, it

is available:

#include <iostream.h>

int main()

{

 int students;

 int *ptrstudents;

 ptrstudents = &students;

 cout << "Number of students: ";

 cin >> students;

 cout << "\nNumber of students: " <<

 students << "\nThat is: " <<

*ptrstudents << “students.";

 cout << "\n\n";

 return 0;

}

This could produce:

Number of students: 24

Number of sudents: 24

That is: 24 students

INTRODUCTION TO C++ UNIT 5

INSTITUTE OF DISTANCE & OPEN LEARNING

In the same way, you can request a value from the user and store it in the

pointer. To see an example, make the following change to the file:

#include <iostream.h>

int main()

{

 int students;

 int *ptrstudents;

 ptrstudents =&students;

 cout << "Number of students ";

 cin >> *ptrstudents;

 cout << "\nNumber of students: " << students

 << "\nThat is: " <<

*ptrstudents << students.";

 cout << "\n\n";

 return 0;

}

You can use various pointers on the same program. Apply an example by

making the following changes:

#include <iostream.h>

int main()

{

 int maleTeacher;

 int femaleTeacher;

 int *ptrmaleTeacher;

 int *ptrfemaleTeacher;

 ptrmaleTeacher = &maleTeacher;

 ptrfemaleTeacher = &femaleTeacher;

 cout << "Number of male Teacher : ";

 cin >> *ptrmaleTeacher;

 cout << "Number of female Teacher : ";

 cin >> *ptrfemaleTeacher;

 cout << "\nNumber of Teachers:";

 cout << "\n male Teacher:" << "\t" <<

maleTeacher<< "\nThat is: " << *ptrmaleTeacher <<

" Teachers.";

 cout << "\nfemale Teacher:" << "\t" <

maleTeacher<< "\nThat is: " << *ptrfemaleTeacher

<< " Teachers.";

 cout << "\n\n";

 return 0;

}

 We have learned how to perform algebraic calculations and

expressions in C++. When performing these operations on pointers,

INTRODUCTION TO C++ UNIT 5

INSTITUTE OF DISTANCE & OPEN LEARNING

remember to use the * for each pointer involved. The calculations should

be as smooth.

#include <iostream.h>

int main()

{

 int maleTeacher;

 int femaleTeacher;

 int totalTeacher;

 int *ptrmaleTeacher;

 int *ptrfemaleTeacher;

 int *ptrTotalTeacher;

 ptrmale = &maleTeacher;

 ptrfemale = &femaleTeacher;

 ptrTotal = &totalTeacher;

 cout << "Number of male Teachers: ";

 cin >> *ptrmaleTeacher;

 cout << "Number of female Teachers:

";

 cin >> *ptrfemaleTeacher;

 cout << "\nNumber of Teacher:";

 cout << "\nMaleTeacher:" << "\t"

<<maleTeacher

 << "\nThat is: " <<

*ptrmaleTeacher << " Teachers.";

 cout << "\nfemaleTeacher:" << "\t"

<< femaleTeacher

 << "\nThat is: " <<

*ptrfemaleTeacher << " Teachers.";

 Total =male + female;

 *ptrTotalTeacher = *ptrmaleTeacher +

*ptrfemaleTeacher;

 cout << "\n\nTotal number of Teachers: " <<

totalTeacher;

 cout << "\nThere are " << *ptrTotalTeacher

<< " Teachers";

 cout << "\n\n";

 return 0;

}

This would produce:

Number of male Teachers: 26

Number of female Teachers: 24

maleTeacher: 26

INTRODUCTION TO C++ UNIT 5

INSTITUTE OF DISTANCE & OPEN LEARNING

That is: 26 Teachers

femaleTeacher: 24

That is: 24 Teachers

Total number of Teachers: 50

There are 50 Teachers

12.6 POINTERS IN FUNCTION

We know that a function uses arguments in order to carry its

operation. The arguments value are usually provided to the function. When

necessary, a function also declares its own variable to get the value. Like

other variables, pointers can be provided to a function,

When declaring a function that takes a pointer as an argument, you

have to use the asterisk for the argument or for each argument(formal

arguments). When calling the function, use the references to the variables.

The function will perform its assignment on the referenced variable(s).

After the function has performed its assignment, modifies value(s) of the

argument(s) will be stored and given those modified value to the calling

function(actual arguments).

Here is a starting file from what we have learned so far:

#include <iostream.h>

int main()

{

 int a = 12;

 int b = 5;

 cout << "The value of a = " << a <<

endl;

 cout << "The value of b = " << b << endl;

 cout << endl;

 return 0;

}

This would produce:

To pass arguments to a function, you can make the following changes:

#include <iostream.h>

int main()

{

 int a = 3;

 int b = 5;

The value of a = 12

The value of b = 5

INTRODUCTION TO C++ UNIT 5

INSTITUTE OF DISTANCE & OPEN LEARNING

 void Value(int sa, int pa);

 cout << "When starting, within main():\n";

 cout << "\t The value of a = " << a<< endl;

 cout << "\t The value of b = " << b << endl

 Value(sa, pa);

 cout << "\n\nAfter calling ChangeValue() ,

within main():\n";

 cout << "\t The value of a = " << a<< endl;

 cout << "\t The value of b = " << b << endl

 cout << endl;

 return 0;

}

void Value (int s, int p)

{

 s = 8;

 p = 12;

 cout << "Within ChangeValue()"<< "\n\tThe value

of s = " << s<< "\n\tThe value ofp = " << p;

}

After executing, the program would produce:

When starting, within main():

 The value of a = 3

 The value of b = 5

Within Value()

 The value of s = 3

 The value of p = 5

After Within Value(), Within main():

 The value of a = 3

 The value of b = 5

To pass pointer arguments, use the asterisks when declaring the function,

and use the ampersand & when calling the function. Here is an example:

#include <iostream.h>

int main()

{

 int a = 12;

 int b = 5;

 void Value(int sa, int pa);

 void ChangeValue(int *sa, int *pa);

 cout << "When starting, within main():\n";

INTRODUCTION TO C++ UNIT 5

INSTITUTE OF DISTANCE & OPEN LEARNING

 cout << "\t The value of a = " << a<<

 endl;

 cout << "\t The value of b = " << b <<

 Value(sa, pa);

 cout << "\n\nAfter calling Value(), within

main():\n";

 ccout << "\t The value of a = " << a<<

 cout << "\t The value of b = " << b <<

endl

 ChangeValue(&sa, &pa);

 cout << "\n\nAfter calling ChangeValue(),

within main():\n";

 cout << "\t The value of a = " << a<<

endl;

 cout << "\t The value of b = " << b <<

endl

 cout << endl;

 return 0;

}

void Value(int s, int p)

{

 s = 8; p = 5;

 cout << "\nWithin Value()"

 << "\n\t The value of s= " << s

 << "\n\t The value of p = " << p;

}

void ChangeValue(int *sa, int *pa)

{

 *sa= 26;

 *pa = 17;

 cout << "\nWithin ChangeValue()"

 << "\n\tThe value of sa = " << *sa

 << "\n\tThe value of pa = " << *pa;

}

The result of executing the program is:

When starting, within main():

 The value of a = 12

 The value of b = 5

Within Value()

 The value of s = 8

 The value of p= 5

INTRODUCTION TO C++ UNIT 5

INSTITUTE OF DISTANCE & OPEN LEARNING

After calling Value(), within main():

 The value of a = 12

 The value of b = 5

Within ChangeValue()

 The value of sa = 26

 The value of pa = 17

After ChangeValue (), within main():

 The value of sa = 17

 The value of pa = 26

12.7 VOID POINTERS

Pointer to Void:

General Syntax:
void* pointer_variable;

Void is used as a keyword

We know that the data type the pointer variable defines is the same

as the data type the pointer points to. The address placed in a pointer must

have the same type as the pointer.

For example:

Sample Code

1. int i;

2. float f;

3. int* abc;

4. float* xyz;

5. then

6. abc=&i;

It is correct because the address of integer variable is stored in an integer

pointer.

If a user writes the statement:

abc=&f;

INTRODUCTION TO C++ UNIT 5

INSTITUTE OF DISTANCE & OPEN LEARNING

The above statement result an error. The address of the floating variable(i.e

&f) is stored in an integer pointer (abc) that is incorrect. Similarly, if the

programmer tries to place the address of an integer(i.e &i) variable to a

float pointer, such as:

xyz=&i;

The above statement will also show an error.

The Pointer to Void is a special type of pointer that the programmer can

use this variables to point to any data type.

Using the above example, the programmer declares pointer to void :

void*num;

Using the above example's definition and assigning the pointer to void to

the address of an integer variable is perfectly correct.

num=&i;

Using the above example to define the pointer to void and assign the

pointer to void to the address of a float variable as below is also perfectly

correct.

num=&f;

Pointer to void, or a void pointer, is a special type of pointer that has a

provides facility of pointing to any data type.

 There are limitations in the usage of void pointers that are explained

below.

The programmer must note that void pointers cannot be de-referenced in

the same manner.

Direct dereferencing of void pointer is not permitted.

The programmer must change the pointer to void as any other pointer type

that points to valid data types such as, int, char, float and then dereference

it.

This conversion of pointer to some other valid data type is achieved by

using the concept of type-casting.

12.8 POINTER TO CONSTANT

INTRODUCTION TO C++ UNIT 5

INSTITUTE OF DISTANCE & OPEN LEARNING

Just like an ordinary variable, pointer can declared as constant

To declare a const pointer, use the const keyword between asterisk and the

pointer variable

 int value=7;

int *const ptr = &value;

Just like a normal const variable, a const pointer must be initialized to a

value when its declared and its value cannot be changed.This mean that a

const pointer is point to same value. In the above example ptr is always

point to the address of the value variable. However the value which is

declared is still the non-const variable , so we can still the change the value

of the value variable being pointed via the dereferencing the pointer. i.e

*ptr=8;// since its allowed, because ptr is point to non-const variable.

It is also possible to declare a pointer to a constant variable by using the

const before the data type.

int Value = 7;

const int *Ptr = &Value;

Note that the pointer to a constant variable does not actually have to point

to a constant variable. Instead, think of it this way: a pointer to a constant

variable treats the variable as constant when it is accessed through the

pointer.

Value = 8; // Value is non-const

Since it is okay,

But the following is not:

*Ptr = 8; // Ptr treats its value as const

Because a pointer to a const value is a non-const pointer, the pointer can be

redirected to point at other values:

int Value = 5;

int Value2 = 6;

const int *Ptr = &Value;

Ptr = &Value2; // okay

To summarize:

A non-const pointer can be redirected to point to other addresses.

A const pointer always points to the same address, and this address can not

be changed.

INTRODUCTION TO C++ UNIT 5

INSTITUTE OF DISTANCE & OPEN LEARNING

A pointer to a non-const value can change the value it is pointing to.

A pointer to a const value treats the value as const (even if it is not), and

thus can not change the value it is pointing to.

Finally, it is possible to declare a const pointer to a const value:

const int Value;

const int *const Ptr = &Value;

A const pointer to a const value cannot be redirected to point to another

address, nor can the value it is pointing to be changed.

12.9 CONSTANT POINTERS

When you need to define a constant pointer to a variable/object; for

instance, when taking a function address, or when you want to protect a

pointer from unintended modifications such as assignment of new address,

pointer arithmetic, etc. In fact, an objects this is a constpointer. A constant

pointer is declared:

 int a= 10;

int *const b = &a; //b is a constant pointer to an int

*b = 20; //OK, a is assigned a new value

b++; //Error; cannot change conpi

const defines a constant pointer, whereas a const variable is declared like

this:

 const int k = 10; //k’s value may not be changed

And a const pointer to a const variable:

 int *const b = &k; //b is a constant pointer to a const int

*b = 20; //Error; k’s value cannot be modified

b++; //Error; cannot modify a const pointer

12.10 GENERIC POINTER

The void pointer, also known as the generic pointer, is a special

type of pointer that can be pointed at objects of any data type. A void

pointer is declared like a normal pointer, using the void keyword as the

pointer’s type:

When a variable is declared as being a pointer to type void it is

known as a generic pointer. Since you cannot have a variable of type void,

the pointer will not point to any data and therefore cannot be dereferenced.

INTRODUCTION TO C++ UNIT 5

INSTITUTE OF DISTANCE & OPEN LEARNING

It is still a pointer though, to use it you just have to cast it to another kind of

pointer first. Hence the term Generic pointer.

This is very useful when you want a pointer to point to data of different

types at different times.

Here is some code using a void pointer:

#include <iostream.h>

int main()

{

 int num[3] = {10,20,30};

 char name[30] = "Welcome to C World";

 int *pint = NULL;

 void *pvoid = NULL;

 int i;

 pint = #

 for (i=0; i<3; i++)

 cout<<*(pint + i);

 cout<<”\n”;

 // The same can be done using void pointer as

follows.

 pvoid = #

 for (i=0; i<3; i++)

 cout<<*((int *)pvoid + i);

 // Same void pointer can be cast to char.

 cout<<"\n";

 pvoid = name;

 for(i=0; i < strlen(name); i++)

 cout<< *((char *) pvoid + i));

 getch();

}

INTRODUCTION TO C++ UNIT 5

INSTITUTE OF DISTANCE & OPEN LEARNING

INTRODUCTION TO C++ UNIT 6

INSTITUTE OF DISTANCE & OPEN LEARNING

13

Chapter 13

String

Unit Structure

13.1 What is String?

13.2 The String Copy Function(strcpy())

13.3 The String Concatenation Function(strcat())

13.4 The String Compare Function(strcmp)

13.1 What is String?

A string is sequence of characters. Earlier version of C++ doesnot

contain the built-in types for c++. The manipulation operation in strings is

very tedious task in earlier version to this we have to define the array of

character to string.

 Now ANSCI standard provides a new class called string. For using

class string, the program must include a header file knows as <string.h>

In c++, The string class is very large and include reach set of

constructor, members function and operator.

The prototypes for three of string’s most commonly used constructors are

shown here:

string();

string(const char *str);

string(const string &str);

The first constructor creates an empty string. The second

constructor creates a string object from the null-terminated string pointed

to by str.The third constructor creates a string from

another string object.

Accessing String:

• We can also initialize a string by taking values from user using

CIN command. But we must be aware about two things while

initializing the string variable .

– The First thing is the length of the string should not exceed

the dimension or size of the character array. This is because

INTRODUCTION TO C++ UNIT 6

INSTITUTE OF DISTANCE & OPEN LEARNING

the C++ compiler doesn’t check bounds on character

arrays.

– CIN is not capable of receiving multi-word string.

Therefore string such as “hello world” would be

unacceptable. This is because the CIN “>>” operator

considers a space to be a terminating character. Thus it will

read strings consisting of single word, but anything typed

after a space is thrown away.

• We can overcome this problem of reading text containing spaces/

blanks in two ways.

– We can use gets() and puts() functions instead of cin>>

and cout<< respectively.

– We can also use cin.get() function of the stream class.

Using gets(), puts() functions

void main()

 {

 char name[20];

 cout<<“enter name of Person”;

 gets(name);

 puts(“hello”);

 puts(name);

 cout<<name;

 }

Using cin.get() function

void main()

 {

 char name[20];

 cout<<“enter name”;

 cin.get(name, 20);

 cout<<name;

 }

• There are a large set of useful string handling library functions

provided by every C++ compiler. But we will only discuss four

main functions. Which are

– strlen() = It is use to finds the length of a string.

– strcpy()= It is use to copies the string into another string .

– strcat() = It is use to Append the string at the end of

another string.

– strcmp()= It compares two strings.

INTRODUCTION TO C++ UNIT 6

INSTITUTE OF DISTANCE & OPEN LEARNING

The String Length function(strlen())

• This function is used to counts the number of characters presents in

a string.

• While calculating length of the string it doesn’t count ‘\0’ (null

character).

void main()

 {

 char str1[]= “hello world”;

 char str2[]= “India”;

 int length1= strlen(str1);

 int length2= strlen(str2);

 cout<<length1;

 cout<<length2;

 }

13.2 THE STRING COPY FUNCTION(STRCPY())

• This function is used to copies the contents of one string into

another string.

 strcpy(Destination , source)

• strcpy() goes on copying the each characters of source string into

the destination string till it doesn’t encounter ‘\0’. It is our

responsibility to see that the destination string should be big

enough to hold source string.

void main()

 {

 char str1[] = “India”, str2[20];

 strcpy(str2,str1);

 cout<<str2;

 }

13.3 THE STRING CONCATENATION FUNCTION

(STRCAT())

• The function is used to concatenate the source string at the end of

destination string.

 strcat(destination, source);

• The destination string should be big enough to hold final string.

void main

 {

INTRODUCTION TO C++ UNIT 6

INSTITUTE OF DISTANCE & OPEN LEARNING

 char str1[] = “Hello”;

 char str2[15] = “World”;

 strcat(str2, str1);

 cout<<str2;

 }

13.4 THE STRING COMPARE FUNCTION(STRCMP)

• This function compares two string to find checks whether the two

string are same or different.

• The two strings are compared character by character until there is a

mismatch or end of one of the string is reached.

• If the two strings are equal it will return a value zero. If they are

not than it returns the numeric difference between the ASCII value

of non-matching characters.

Result Condition

Less than zero Str1<Str2

zero Str1==Str2

Greater than zero Str1>Str2

void main()

 {

 char str1[]= “hello”;

 char str2[]=“world”;

 int i=strcmp(str1, str2);

 cout<<i;

 }

INTRODUCTION TO C++ UNIT 6

INSTITUTE OF DISTANCE & OPEN LEARNING

14

Chapter 14

Basic Vectors

Unit Structure

14.1 Resizing Vectors

14.2 RESIZING VECTORS

14.1 RESIZING VECTORS

Arrays is use to store a group of values under a single name. The

values can be any available data type (e.g., int, double, string, etc.). In

C++, we talk about vectors, rather than arrays.

Vectors are declared with the following syntax:

vector<type> variable_name (num_of_elements);

The number of elements is optional. You could declare it like this:

vector<type> variable_name;

And that we would also declare an empty vector i.e a vector that contains

zero elements.

The argument type in angle-brackets indicates the data type of the

elements of the vector; variable_name is the name that we assign to the

vector, and the optional num_of_elements may be provided to indicate

how many elements the vector will initially contain.

Below are several examples of vector declarations:

vector<int> num (5); // Declares a vector of 5 integers

vector<double> money (20); // Declares a vector of 20 doubles

vector<string> names; // Declares a vector of strings,

 // initially empty (contains 0 strings)

When using vectors in our programs, we must provide the

appropriate #include directive at the top of the file, since vectors are a

Standard Library facility, and not a built-in part of the core language:

#include <vector.h>

INTRODUCTION TO C++ UNIT 6

INSTITUTE OF DISTANCE & OPEN LEARNING

After a vector has been declared specifying a certain number of

elements, we can refer to individual elements in the vector using square

brackets to provide a subscript or index, as shown below:

money[5]

When using a vector or array followed by square brackets with a

subscript, the resulting expression refers to one individual element of the

vector or array, as opposed to the group of values, you can use that

expression as you would use a variable of the corresponding data type.

In the above example, the data type of the expression money[5] is

double, so you can use it as you would use a variable of type double —

you can assign a value to it (a numeric value, with or without decimals), or

you can retrieve the value, use it for arithmetic operations, etc.

The above extends to other data types as well; if we have a vector

of strings called names, the expression names[0] is a string, referring to

the first element in the vector names. We can do anything with this

expression that we would do with a string variable. For instance, the

expression names[0].length() gives us the length of this string.

An important condition for the index or subscript is that it must

indicate a valid element in the vector. Elements in a vector are

“numbered” starting with element 0. This means that valid subscript

values are numbers between 0 and size−1, where size is the number of

elements of the vector. For the example above of grades, valid subscripts

are between 0 and 19.

The following fragment shows an example of a program that asks the user

for marks for a group of 20 students and stores them in a vector.

#include <iostream.h>

#include <vector.h>

int main()

{

 vector<double> students_roll(20);

 for (vector<double>::size_type i = 0; i < 20;

i++)

 {

 cout << "Enter roll number of students

#" << i+1

 << ": " << flush;

 cin >> student_roll[i];

 }

 return 0;

}

INTRODUCTION TO C++ UNIT 6

INSTITUTE OF DISTANCE & OPEN LEARNING

The first statement declares a vector called student_rolls with

capacity to hold 20 values of type double. These values can be accessed

individually as students_roll[0] to students_roll[19]. The for loop has the

counter i go from 0 to 19, allowing access to each individual element in a

sequential manner, starting at 0 and going through each value from 0 to

19, inclusively.

Notice the data type for the subscript, vector<double>::size_type.

As with strings, class vector<type> provides a size_type to represent

positions and sizes. It is always recommended that you use this data type

when dealing with vectors.

for loops usually go hand in hand with the use of vectors or arrays,

as they provide a convenient way to access every element, one at a time,

using the loop control variable as the subscript. This does not mean that

we must use for loops whenever we require access to the elements of a

vector — it only means that quite often, a for loop provides a convenient

approach and we choose it as the mechanism to access the elements.

14.2 RESIZING VECTORS

Vectors have one important advantage with respect to C-style

arrays: vectors can be resized during the execution of the program to

accommodate any extra elements as needed, or even to “shrink” the

vector.

In the example from the previous fragment above, if we don't

know ahead of time (i.e., at the time we are writing the program) that there

are 20 students, we could obtain that information at run-time (e.g., prompt

the user for the number of students) and resize the vector accordingly, as

shown below (though we notice that the example is somewhat silly, in that

we could have waited until having the value of num_students and then

declare the vector initializing it with that size):

vector<double> students_roll;

 // no size specified: vector contains

 // no elements

int num_students;

cout << "Number of students: " << flush;

cin >> num_students;

student_marks.resize (num_students);

for (vector<double>::size_type i = 0; i < num_students; i++)

{

 cout << "Enter marks for student #" << i+1

 << ": " << flush;

INTRODUCTION TO C++ UNIT 6

INSTITUTE OF DISTANCE & OPEN LEARNING

 cin >> student_marks[i];

}

Notice that the valid subscripts for a vector with num_students

elements are 0 to num_students−1. For that reason, the for loop starts at 0

and goes while i is less than num_elements.

It is always a better idea to control for loops using the size method

of vector. That way, we make sure that we loop only through the right

subscript values, and we avoid the risk of accidentally exceeding the limits

of the vector:

for (vector<double>::size_type i = 0; i < student_marks.size(); i++)

The difference in this case seems insignificant, and it almost

sounds unnecessary to use the size method; but again, it's always a good

idea to stick to good programming practices that may be very convenient

in larger or more complex programs.

In some situations, we can not determine the number of elements

before reading them. That is, we may have to read numbers to then

determine when to stop reading them (an example would be, keep reading

values until you read a negative value). In such situations, the trick of

resizing the vector is not an option (at least not the way it is used in the

example above).

Vectors provide a convenient way of handling this type of

situation. We can use the push_back method to append one element at the

end of the array. The operation includes resizing to one more element to

accommodate for the extra element, and storing the given value at the end

of the array.

The example below shows the use of push_back to accept numbers

from the user and store them in a vector, until the user indicates that there

are no more numbers.

#include <iostream.h>

#include <vector.h>

int main()

{

 vector<double> student_marks;

 double mark;

 char answer;

 cout << "Enter marks (y/n)? " << flush;

 cin >> answer;

 while (answer == 'y' || answer == 'Y')

INTRODUCTION TO C++ UNIT 6

INSTITUTE OF DISTANCE & OPEN LEARNING

 {

 cout << "Enter value: " << flush;

 cin >> mark;

 student_marks.push_back (mark);

 cout << "More students (y/n)? " << flush;

 cin >> answer;

 }

 return 0;

}

INTRODUCTION TO C++ UNIT 6

INSTITUTE OF DISTANCE & OPEN LEARNING

15

Chapter 15

Structure

Unit Structure

15.1 Declaring The Structure

15.2 Combining Declaration and Definition

15.3 Initializing Structure Members

15.4 Structure As Function Arguments

15.5 Returning structure variables

15.6 Nested Structures

15.7 Array of Structures

• A structure is a collection of simple variables. The variables in a

structure can be of different types: some can be int, some can be

float and so on.

• The data items in a structure are called members of a structure.

15.1 DECLARING THE STRUCTURE

• The structure declaration tells how the structure is organized. It

specifies what members the structure will have.

 struct student

 {

 char firstName[10];

 char lastName[10];

 float gpa;

 int regNumber;

 };

Defining Structure Variable:

• We can define the structure variable same as variables by using

built-in data type.

Example:

 student std1, std2;

• The above statement defines two variables std1 and std2 of type

structure student.

• Once a structure variables has been defined, its members can be

accessed using operator called DOT operator/ member access

operator.

INTRODUCTION TO C++ UNIT 6

INSTITUTE OF DISTANCE & OPEN LEARNING

 structVariable.memberName

Example:

 std1.regNumber=536;

 std1.firstName=“Amit”; //error

 std1.gpa=3.2;

 std1.lastName=“Tambe”; //error

Note: The first component of an expression involving the dot operator is

the name of the specific structure variable not the name of the structure.

struct part

 {

 int modelNumber;

 int partNumber;

 float cost;

 };

 void main()

 {

 part p1;

 p1.modelNumber=3215;

 p1.partNumber=10;

 p1.cost=1500;

 cout<<p1.modelNumber;

 cout<<p1.partNumber;

 cout<<p1.cost;

 getch();

}

15.2 COMBINING DECLARATION AND DEFINITION

• We can combine two statements of structure definition and

declaration into a single statement.

 struct

 {

 int modelNumber;

 int partNumber;

 float cost;

 }p1;

Note: you can remove the name of the structure in the declaration, if no

more variables of this structure type will be defined later in the listing.

15.3 INITIALIZING STRUCTURE MEMBERS

struct part

 {

 char partName[10];

INTRODUCTION TO C++ UNIT 6

INSTITUTE OF DISTANCE & OPEN LEARNING

 int partNumber;

 float cost;

 };

void main()

{

 part p1={“abc”, 25, 1500.0};

 cout<< p1.partName;

 cout<<p1.partNumber<<p1.cost;

}

Structure Variables in Assignment Statements:

• As normal variables, one structure variables can be assigned to

another.

Example

 part p1={“abc”, 25, 1500.0}, p2;

 p2=p1;

• In the above statement, the value of each member of p1 is assigned

to the corresponding member of p2.

 p2.cost= p1.cost;

• Similarly, you can also assign a single data member of one

structure variable to the data member of other structure variable.

Note: one structure variable can be assigned to another only when both are

of the same structure type.

15.4 STRUCTURE AS FUNCTION ARGUMENTS

struct part

{

 char partName[10];

 int partNumber;

 float cost;

};

void display(part);

void main()

{

 part p1;

 cin>>p1.partName;

 cin>>p1.partNumber;

 cin>>p1.cost;

 display(p1);

}

void display (part p2)

{

 cout<<p2.partName;

INTRODUCTION TO C++ UNIT 6

INSTITUTE OF DISTANCE & OPEN LEARNING

 cout<<p2.partNumber;

 cout<<p2.cost;

}

15.5 RETURNING STRUCTURE VARIABLES

• Like normal variables, you can also return the structure variables

as a returning value of the function.

 part p1,p2;

 p1= display(); // function calling

 part display() //function definition

 {

 part p3={“abc”, 25, 1000.0};

 return p3;

 }

15.6 NESTED STRUCTURES

• One Structure can be nested into another structure.

• Example

struct Distance

 {

 int feet;

 float inches;

 };

 struct Room

 {

 char name[20];

 Distance length;

 Distance width;

 };

Accessing Nested Structure Members:

• To access the nested structure members, we have to apply dot

operator twice.

•

Example

Room Dining;

 strcpy(Dining.name,”dining room”);

 Dining.length.feet=10;

 Dining.length.inches=6;

 Dining.width.feet=20;

INTRODUCTION TO C++ UNIT 6

INSTITUTE OF DISTANCE & OPEN LEARNING

Initializing Nested Structures

• In the previous example we can initialize the nested structure such

that each structure of type Distance, which is embedded in Room,

is initialized separately. Which involves surrounding the values

with braces and separating them with commas.

• Example;

 Room dining ={“Dining room”, {13, 6.5},{20,10} };

struct Distance

{

 int feet;

 float inches;

};

struct Room

{

 char name[20];

 Distance length;

 Distance width;

};

void main()

{

 Room dining= {“Dining room”,

 {13,3.2},

 {10,0.0} };

 cout<<dining.name<<endl;

 cout<<dining.length.feet<<endl;

 cout<< dining.length.inches<<endl;

 cout<< dining.width.feet<<endl;

 cout<<dining.width.inches<<endl;

}

15.7 ARRAY OF STRUCTURES

struct part

{

 int modelnumber;

 int partnumber;

 float cost;

};

void main ()

{

 int n;

 part abc[10];

for (n=0; n<10; n++)

 {

INTRODUCTION TO C++ UNIT 6

INSTITUTE OF DISTANCE & OPEN LEARNING

 cout<< “Enter Model Number”;

 cin>>abc[n].modelnumber;

 cout<<“Enter Part Number”;

 cin>>abc[n].partnumber;

 cout<<“Enter Cost”;

 cin>>abc[n].cost;

 }

}

15.8 PASSING STRING AS FUNCTION ARGUMENTS

void abc(char[]);

void main ()

{

 char str[20];

 cin>>str;

 abc(str);

{

void abc(char str1[])

{

 cout<<str1;

}
